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Abstract

We consider planar steady-state flows of an ideal perfect gas around wing profiles.
Subsonic free-stream velocity exceeds critical value that leads to the arising local
supersonic zones probably containing shock waves. We establish some proper-
ties of supercritical flows in the assumption that the corresponding boundary value
problem is well-posed in the class of discontinuous flows. We use a notion a "well-
streamlined airfoil" as the synonym of a separation-free flow. We prove that the
Chaplygin-Zhukovskii-Kutta condition is necessary and sufficient for the profile
to be well-streamlined. We establish some asymptotical properties of the velocity
in the neighborhood of the trailing edge of the profile. We prove that the shock
wave cannot intersect the profile contour. We formulate an approach to designing
weak-supercritical flows without shock waves.

AMS subject classification: 35Q35.
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1. Introduction

We continue researching transonic (planar, steady-state, potential and vortical) flows of
the air in the framework of the theory of ideal Clapeiron’s gas [1].

The classical theory of the irrotational flows around airfoils based on the theory of
analytical and pseudo-analytical functions is quite adequate at the moderate velocities
of the flight, when the exterior flow is uniformly subsonic. But if subsonic velocity
|V∞| of the flight exceeds a critical value Vcr that depends on the profile P , the local
supersonic zones appear in the flow. (Such flows are called supercritical.) Thus there is
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need in transonic gas dynamics based on the theory of differential equations of mixed
elliptic-hyperbolic type.

A potential supercritical flow around the profile is known to be "unstable" with respect
to continuous deformations of the contour: by virtue of well-known Nikolskii-Taganov
theorem (see [2]), straightening small segment of the profile leads to discontinuity of
the velocity field. Nevertheless it is possible to expect (especially when considering
strictly convex profiles) that the mathematical problem is well posed in the class of the
discontinuous flows, i.e. that straightening segment of small length results in arising
shocks of small length or intensity.

Thus supercritical flows contain, as a rule, shock waves generating vorticity. The
length and intensity of shocks increases along with the flight velocity. This results in
sharply increasing energy losses. However, increasing the flight velocity reduces total
losses. Therefore, the form of the “supercritical” wing profiles intended for the long-
distance flights of civil aircraft is a subject to optimization. The represented results can
be useful for designing supercritical lifting wing profiles of high efficiency.

2. Current definitions

Velocity V , density ρ, temperature T and pressure p is assumed to be continuously
differentiable functions of the Cartesian coordinates r = xi + yj in R2\P \L , where L

is lines of the shock waves that satisfy the Hugoniot conditions. The velocity vector V
achieves a given value V∞ at infinity.

By the definition given in the monograph [2], a wing profile P is a closed smooth
curve, except for a “sharp-pointed trailing edge” with a small non-zero angle α.

By virtue of equation div(ρV) = 0, there exists stream function ψ(x, y). Its level
lines that are called streamlines are vector lines of the velocity field. The stream line
ψ(x, y) = 0 coincides with the profile contour. Two branching points O1,2 divide the
stream line ψ = 0 into the “upper” and “low” pieces.

Let us limit ourselves to the set of convex profiles.
Consider the straight line passing from the trailing edge such as the profile projection

on this line be of maximal length. The intersection of the profile with this line is called
the profile chord. The angle δ between the vector V∞ and profile chord is called the
attack angle.

Transonic aerodynamics (see the monograph [2]) says that for each profile P and the
attack angle δ there exists a critical magnitude Vcr = Vcr(P, δ) of the subsonic velocity
V∞, when the subsonic velocity on the profile increases up to the sonic value. In this case
the flow around profile is called critical. A set of the sonic points on the profile contour
is being transformed at the further increase of V∞ into supersonic sub-domain inside
the flow domain. In this case the flow is called supercritical. The developed supersonic
zones contain, as a rule, shock waves.

These shock waves in the supersonic zones, if they exist, generate vorticity that breaks
equality between magnitudes of the velocity circulations on the profile and on infinity.
This changes the lifting force and leads to emerging of the so called “wave resistance”
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[1].

3. Condition for the ideal gas theory to be adequate

It is accepted in aerodynamics to describe laminar flows at large Re numbers using the
theory of ideal gas taking into account an unseparated boundary layer.

However, if the boundary layer comes off and the developed areas of circular non-
stationary flows are being formed, this theory becomes inadequate; in particular, the
additional energy losses in these areas cannot be correctly calculated. A separation-free
boundary layer is known to exist (see the work [3]) if the flow deceleration on the body
is bounded by some number dependent on the flow data. Let us call a wing profile “well-
streamlined” if this condition is fulfilled. Below only such wing profiles are considered.

Definition 3.1. A stationary flow around a profile P is separation-free, if one of two
branching points O1,2 of the stream line ψ = 0 is the sharp-pointed trailing edge O2.

Actually this definition asserts sufficiency of the so called Zhukovskii-Chaplygin-
Kutta condition for the profile to be well-streamlined. (Necessity will be proved in
Theorem 2.) Initially, this condition has been formulated by the authors for incompress-
ible fluids as a condition for the velocity to be continuous in closed exterior of the profile
[4]. Indeed, if the condition is not fulfilled, the velocity of the incompressible fluid,
which is bending around the sharp-pointed trailing edge, should turn out in this point
into infinity.

S.A. Chaplygin has proved that this condition provides uniqueness of the potential
flow of incompressible fluid with a given velocity on infinity. (Therefore, we shall call
this Chaplygin’s condition.) It has been established later that this condition guarantees
uniqueness in more general case of the compressible gas as well [2]. However, if there
are shock waves, the flow uniqueness is not proved up to now.

4. Velocity in the sharp trailing edge

It follows from the Chaplygin condition for the potential flows of incompressible fluid
that V = 0 in the sharp edge [4]. It is true also for the compressible fluid and for
supercritical vortical flows, when vorticity arises due to shock waves.

Theorem 4.1. If a flow around a profile is separation-free and the Mach number is
bounded, V = ui + vj is zero in the sharp-pointing trailing edge O2.

Proof. In the air the formulas take place at γ = 1, 4

T = T0(ψ)

(
1 + γ − 1

2
M2

)−1

, ρ = ρ0(ψ)

(
1 + γ − 1

2
M2

)− 1
γ−1

,

M2 = V 2

γRT0(ψ) − (γ − 1)V 2/2

(1)
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Here M is Mach number, ρ0(ψ) = ρ|V =0 �= 0, T0(ψ) = T |V =0 �= 0 are the “stagna-
tion” density and temperature,γ , R are adiabatic index and gas constant correspondingly.
Let temperature T be finite constant T∞ = T |V =V∞ in incoming air. Then the stagnation
temperature T0(ψ) in incoming air is a finite constant T0, too. By virtue of the Hugoniot
relation, T0 does not change when streamlines intersects shocks, therefore T0(ψ) = T0
everywhere in the flow domain.

By virtue of Definition 3.1, the streamline ψ = 0 branches into the “upper” and
“lower” segments of the profile contour. Therefore, the trailing edge O2 should be a
saddle singular point of the ordinary differential equation

dy

∂x

∣∣∣
P

= ρ(ρ±
0 (ψ)M)ν

ρ(ρ±
0 (ψ)M)u

∣∣∣
P

⇒ dy

∂x

∣∣∣
O2

= lim
r→r(O2)

ρ(ρ±
0 (ψ)M)ν

ρ(ρ±
0 (ψ)M)u

(2)

The difference in the constant values ρ±
0 (ψ)|ψ=0 of the stagnation density on the “upper”

and “lower” sides of the profile can arise because of different intensity of the shock waves.
By condition, M < ∞ ⇒ |V|2 < 2RT0γ /(γ − 1) < ∞, hence the right-hand

part of (2) should have in O2 the indeterminacy v/u ∼ 0/0 , consequently V|O2 = 0.
Theorem 4.1 is proved. �

5. Necessity of the Chaplygin condition

Theorem 5.1. If the Chaplygin condition is not fulfilled in the flow around the wing
profile, then this flow is not separation-free.

Proof. Assume the contrary, then by Theorem 4.1, V �= 0 in the sharp-pointing trailing
edge. If the flow is separation-free, the velocity vector should rotate in O2 on the angle
π − α. This is impossible, if

α < α∗ = π

(√
γ + 1

γ − 1
− 1

)
/ 2, α∗|γ=1,4 ≈ 50◦

because if α = α∗, then the pressure on the low side of the profile will turn out into
zero, hence the flow separation should arise. Indeed, the fluid bending the convex angle
should at first accelerate up to sonic speed. After that the fluid should move satisfying
asymptotic of the Prandtl-Meyer flow described by the equation of the characteristics in
the hodograph-plane [5]

|β(M) − β(1)| =
√

γ + 1

γ − 1
arctan

√
γ − 1

γ + 1
(M2 − 1) −

−arctan
√

M2 − 1 ≤ π − π

2

(√
γ + 1

γ − 1
− 1

) ∣∣∣∣
γ=1,4

= 180◦ − 50◦ = 130◦

where β(M) is the velocity argument.
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Note that as this formula takes place along the stream line ψ = 0, this reasoning is
valid for vortical flows as well.

We omit the proof of impossibility of the case α ≥ 50◦, as this one is not used in the
aviation. Theorem 5.1 is proved. �

6. Asymptotic behavior of the velocity in neighborhood of the sharp
trailing edge

It is proved for incompressible fluids with use of the analytic functions theory that the
velocity in the potential flow has the power singularity in the vicinity of the sharp edge
(see [4])

V = C|z|α/2π−α + · · · (3)

Theorem 6.1. If a flow around the profile is separation-free, the main term of the potential
velocity in the vicinity of the trailing edge O2 is expressed by formula (3).

Proof. Consider the mapping of the profile exterior into the hodograph-plane (V , β).
The stream function ψ(V, β) of the potential flow satisfies the Chaplygin equation [6]

ψV V + ψV

1 + M2(V )

V
+ ψββ

1 − M2(V )

V
= 0 (4)

S.A. Chaplygin has proved (see the monograph [6]) that ψ(V, β) is expressed by the
series that uniformly converges at V 2 < 2γRT0/(γ + 1), i.e. in the subsonic strip of
the hodograph-plane (V , β)

ψ(V, β) =
∞∑

n=0

cnτ
n/2F(an, bn, n + 1, τ ) sin nβ, τ = V 2

2RT0/(γ − 1)

Here F(an, bn, n + 1, τ ) is the hyper-geometric function.
Therefore, the formula is valid in vicinity of the point V = 0

ψ(V, β) =
∞∑

n=0

cnV
n(1 + O(V 2)) sin nβ (5)

(Compare eq. (5) with the formula ψ(V, β) =
∞∑

n=0

cnV
n sin nβ expressing the stream

function in incompressible fluid.)
The neighborhood of the point O2 in the hodograph-plane (V , β) belongs to the strip

0 ≤ β ≤ α. Hence the image of the streamline ψ = 0 that goes out from the profile is
situated inside this strip. Therefore, we have that n = 2πm/α, m = 1, 2, . . . and the
streamline ψ = 0 has in the point O2 the tangent, which is the same as the bisectrix of
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the angle that is formed by the tangents to the velocity vectors on the upper and lower
profile sides. Thus formula (5) is transformed to the form

ψ(V, β) =
∞∑

m=0

cmV
2mπ

α (1 + O(V 2)) sin
2mπ

α
β (6)

To pass into the physical plane, the formulas should be used

xV = −ψV sin β + V −1(1 − M2(V ))ψβ cos β

Vρ(V )
, xβ = V ψV cos β − ψβ sin β

Vρ(V )

yV = ψV cos β − V −1(1 − M2(V ))ψβ sin β

Vρ(V )
, yβ = cos βψβ + V sin βψβ

Vρ(V )

(7)

Differentiating the uniformly converged series (6), we obtain

ψV =
[
V

2π
α

−1 + O
(
V

2π
α

+1
)]

sin
2π

α
β + O

(
V

4π
α

−1
)

sin
4π

α
β

ψβ =
[
V

2π
α + O

(
V

2π
α

+2
)]

cos
2π

α
β + O

(
V

4π
α

)
cos

4π

α
β

Substituting these expressions into formulas (7) and taking into account that

M2(V ) ∼
V →0

V 2, ρ(V ) ∼
V →0

ρ0(1 − O(V 2)) ρ0|ψ=0 = const,

we obtain asymptotical formulas

xV = V
2π
α

−2 sin β sin
2πβ

α
+ V

2π
α cos β cos

2πβ

α
+ · · · = O

(
V

2π
α

−2
)

+ . . . ,

yV = V
2π
α

−2 cos β sin
2πβ

α
− V

π
2α sin β cos

2π

α
β + · · · = O

(
V

2π
α

−2
)

+ . . . ,

xβ = V
2π
α

−1
(

cos
2π

α
β cos β − sin β cos

2π

α

)
+ · · · = O

(
V

2π
α

−1
)

+ . . . ,

yβ = V
π
2α

−1
(

sin β cos β + sin β sin
2π

α
β

)
+ · · · = O

(
V

2π
α

−1
)

+ . . . ,

Integrating these expressions, we obtain

|z| = |x + iy| =
V →0

C1V
(2π−α)/α + · · · ⇒ V =

z→O2
C2|z|α/(2π−α) + · · ·

Theorem 5.1 is proved. �
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7. Shock wave inside supersonic region

Theorem 7.1. If the Chaplygin condition is fulfilled in a supercritical flow around a
smooth strictly convex profile of bounded curvature, then there are no shock waves
intersecting the profile contour.

Proof. A point of the shock wave, in which its intensity equals zero, is called the endpoint.
If the flow velocity in the endpoint is supersonic, then it cannot belong to the profile
contour. Indeed, the endpoint is a cusp of the envelope of characteristics of one family
that is continuously continued into interior of the profile, therefore the velocity gradient
is infinite there. But by condition, the contour curvature is bounded. Hence this endpoint
cannot belong to the profile contour.

If the endpoint of the shock wave is sonic, then this one should be orthogonal in this
point to the profile contour. This is impossible due to non-zero of the contour curvature.

Consider now the case when a shock wave of non-zero intensity intersects the profile
contour. Consider firstly the case of asymmetric profile relative to the profile chord.

As the contour is smooth, the shock wave should be orthogonal to the contour.
Therefore, the total pressure after the shock is less than total pressure in the incoming
flow. By virtue of the profile asymmetry, the total pressures on two segments of the
streamline ψ = 0 divided by the points O1,2 are different in general case. Therefore
the joint streamline that goes from the point O2 should be a contact break. But this is
impossible, as by virtue of Theorem ??, V = 0 in the trailing edge. Therefore, the static
pressures on the different shores of this streamline do not coincide because of the total
pressure distinction. Theorem 7.1 is proved for an asymmetric profile. �

Strictly speaking, the above proof is non-applicable to symmetric flow around a
symmetric profile. However, assuming continuous dependence of the separation-free
flow on the attack angle, we obtain the same result for the symmetric wing as well.

8. Designing weakly supercritical flows without shocks

When increasing the stream velocity up to the critical one, there is a limit of the subcritical
flows sequence that is called the “critical flow” (see the monograph [2]).

Let δV∞ = V∞ − Vcr . Remembering the well-known Ringleb solution [6], let us
assume that at small δV∞ there exists a supercritical separation-free flow without shocks
that depends continuously on δV∞. It is extremely important to learn to design the
airfoils intended for realization of such flows.

In our opinion, to solve this problem a modification of the method [7] can be suc-
cessful.

(Using the Chaplygin hodograph transformation, we have developed in [7] a well-
posed numerical method for designing sub- and critical lifting profiles that are intended
for cruiser flights with high subsonic velocity. A singular Dirichlet problem for stream
function satisfying the Chaplygin equation on two-sheet Riemann surface in subsonic part
of the hodograph-plane was formulated. The lifting wing profiles of 8–10% thickness
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for M∞ = 0, 8−0, 85 were calculated.) The mentioned modification is the problem “in
variations” at small δV∞ determined on the hodograph-domain of a critical flow. The
above Dirichlet problem changes into the problem, in which the boundary value ψ = 0
is given as before on the subsonic part of the hodograph-contour and the derivative
∂ψ/∂V = f (β) is given instead of the condition ψ = 0 on a segment of the sonic
line. The theory of equations of the degenerated elliptic type [8] testifies on unique
solvability of this problem at proper limitations. It should be noted that this solution being
transformed into the physical plane, most likely, will not be continuously depending on
small computational errors in the class of potential flows. Nevertheless, taking into
account stability of the real flows, one can assume that these solutions will be well-posed
in the more wide class of the vortical flows with small shock waves. However, to check
this there is need to solve the direct problem of the flow around a given profile in the
class of vortical flows without smearing shock waves. This is possible, apparently, only
when using equation for the stream function.
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