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Abstract—Elastic wave propagation in a porous medium is numerically studied by applying the grid-
characteristic method. On the basis of direct measurements of ref lected and transmitted wave ampli-
tudes, the reflection and decay coefficients are investigated as depending on the degree of porosity
(percentage of the pore volume) and on the type of the filling substance (solid, liquid, or nothing). The
reflection and decay coefficients are shown to be closely related to the porosity of the medium, which
can be used in geological applications (estimation of porosity) and engineering applications (acoustic
response attenuation).
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The porosity of a medium is defined as the ratio of the volume of all pores to the entire volume of the
medium. This characteristis is used in seismic exploration to analyze seismis responces of porous rock and
in engineering applications to study soundproof covers. For various types of porous media, the effects of
factors, such as viscosity, f luid f low, and saturation, on the velocity and attenuation of elastic waves were
examined in Gurevich and his colleagues’ works [1]. Elastic wave propagation in porous media is usually
simulated using shock-capturing finite-difference methods. The grid-characteristic methods [2, 3] used
in this paper make it possible to consider all inhomogeneous inclusions, including pores, to obtain an ade-
quate wave pattern. The goals of this work are as follows:

(1) To quantitatively estimate the relation between the porosity of the medium and response charac-
teristics, such as the reflection and decay coefficients, by rigorously solving continuum mechanics equa-
tions (with boundary conditions specified on the pore–medium interfaces).

(2) To estimate the influence exerted by various pore fillers (solid, liquid, or no filler) on the reflection
and decay coefficients.

1. SYSTEM OF GOVERNING EQUATIONS

To study elastic wave propagation caused by an incident (compressional) wavefront transmitted
through a porous medium, we used a hybrid grid-characteristic method on nonuniform triangular
meshes. The medoum was assumed to be ideal, isotropic, linear, and elastic. These assumptions corre-
spond to the local equation of motion

where  is the material density,  is the velocity of the medium at a given point,  is the gradient with
respect to spatial coordinates, and  is the Cauchy stress tensor.

We introduce the symmetric small strain tensor

,
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where  is the displacement field ( , where x is the position of some point of the body at the cur-
rent time and X is its position at the initial time) and  is the tensor product operator: . In
the product , the fileld , rather than the subsequent multipliers, is subject to differentiation:

.

The linear elasticity of the material implies the stress–strain relationship

,

where  and  are the Lamé constants, which determine the properties of the elastic material (there are
one-to-one formulas relating the Lamé constants to Young’s modulus and Poisson’s ratio),  is the unit
tensor, and  denotes the double convolution:

.

To obtain a closed system of differential equations for velocities and stresses, we need to differentiate
the stress–strain relationship:

In the considered model, the material characteristics , , and  are assumed to be independent of the
velocities or stresses.

2. NUMERICAL METHOD

The problem was solved numerically by applying the grid-characteristic method [2], which takes into
account the indicated physical features of the problem (i.e., discontinuity propagation along characteristic
surfaces) and provides a basis for numerical algorithms that do not fail on boundaries and on material
interfaces.

The dimensional splitting method described in [2] was used to pass from the multidimensional system
of partial differential equations to several one-dimensional systems of equations solved sequentially at
every integration step.

2.1. Canonical Form of the Differential Equations

Before applying the grid-characteristic method, the dynamical system of solid mechanics equations is
brought to canonical form:

,

where  is the vector of sought functions:

.

The difference schemes involve the matrix  and various functions of . To avoid matrix inversion and
the approximate computation of matrix eigenvalues and eigenvectors in the grid-characteristic difference
schemes,  and its spectral decomposition are represented in the explicit form obtained in [4].

We will use some notation introduced in [4]. Let  be an arbitrary basis for some curvilinear
coordinate system. Most frequently, the axis directions are chosen depending on the local configuration
of grid nodes by using the coordinates of the nodes nearest to a given one. In this paper, in the case of tri-
angular and tetrahedral grids, the coordinate system at every integration step is chosen at random in order
to reduce the possible anisotropy of the method. In the case of hexahedral grids, the coordinate axes are
chosen along the grid lines. Let

,
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where  is a fixed Cartesian coordinate system. Thus,  is a biorthogonal basis with
respect to :

Here, each numerator is a vector cross product and each denominator is a mixed vector product. Each of
the vectors  is associated with an orthonormal basis , where  is codirectional with :

while the unit vectors  and  are chosen so as to obtain an orthonormal basis. In what follows, we
omit the first index j and the second index 0 from , if they can be recovered from the context. Addi-
tionally, the symmetric matrices  are defined as

Finally, let  be the longitudinal speed of sound in the elastic material,  be the trans-

verse speed of sound, and .

Let us write out closed-form expressions for the matrix  and its spectral decomposition ,
where  is a diagonal matrix composed of the eigenvalues of  and  is the matrix composed
of the corresponding eigenvectors of :

,

,

2.2. Grid-Characteristic Method
After making the change of variables , the governing system of equations splits into  indepen-

dent scalar transport equations (  is the order of the system):

.
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The one-dimensional transport equations are solved with the help of characteristics. At the time level
, a characteristics is issued from the node  at which we want to obtain the solution. Then the corre-

sponding component of the vector  is transferred from the intersection point of the characteristic with
the th level to the point :

.
If the characteristic misses a node, then some method (usually interpolation) is used to reconstruct the

solution at the given point. The reconstruction method chosen at the preceding layer determines the
degree of approximation of the grid-characteristic difference scheme. First- and second-order accurate
grid-characteristic schemes were obtained in [2]. A hybrid grid-characteristic scheme was used to solve
problems in solid dynamics on rectangular grids in [5] and on triangular grids in [6, 7]. In [8] higher order
accurate grid-characteristic methods were obtained, which satisfy the monotonicity criteria also presented
in [8]. In this paper, we follow the method described in [6, 7].

After all the components of  were transferred, the solution is recovered as

.

2.3. Boundary Conditions
At the material interfaces, we considered contact of the medium with empty pores (free boundary) or

with liquid-filled pores (free slip). The boundary conditions at the interface between the medium and an
inclusion were set in explicit form, which makes it possible (a) to weaken the constraints imposed on the
positions and orientations of the inhomogeneities; (b) to take into account inhomogeneities with a nearly
zero volume, but a finite surface area; and (c) to improve the numerical accuracy of computed micro-
scopic inhomogeneities with sizes comparable to one grid cell. An unstructured triangular mesh allows
one to describe any shape of inhomogeneities (cavities) inside the rock: pores or plane cracks.

On the outer boundary of the integration domain, we set the total absorption conditions. On the top
boundary of the integration domain and on the crack boundaries, we specified the free surface condition

,
where  defines a (unit) normal to the surface of the domain (or of a crack in the case of the bound-
ary condition specified on a crack boundary). The minus and plus signs correspond to the left and the
right boundaries of the domain (crack), respectively.

2.4. Interpolation in a Triangle
The velocity and stress fields were recovered by not linear interpolation in each triangle, but with the

use nodal values as continuous piecewise quadratic functions. This made the numerical method mono-
tone and allowed us to avoid spurious oscillations of the solution. The simulation technique proposed is
original and was used by the authors in [9–16]. It produces high-order accurate wave fields in arbitrary
randomly inhomogeneous media.

3. NUMERICAL RESULTS
The computational domain was 80 × 160 mm in size. It included a rectangular subdomain of 60 ×

100 mm in size with nonconnected circular pores. The diameter of each pore was 1 mm, and the mini-
mum distance between them was 0.5 mm. The minimum length of an internal grid edge was equal to
0.03 mm. The density of the grid was identical in the entire integration domain. Overall, the integration
domain contained on the order of 11 million vertices (grid nodes).

On the top and bottom boundaries of the integration domain, we set the absorption conditions to pre-
vent reflection from these boundaries and to imitate a continuous medium around the computational
domain. The pores inside the rectangular domain were randomly distributed. Their coordinates were cal-
culated using a random-number generator. Identical pore distributions were ensured for the same porosity
at different fillers. The porosity was specified as follows: 5% (370 pores), 10% (737 pores), 15% (1104
pores), 20% (1467 pores), and 22% (1693 pores). The parameters of the ambient medium and the pore
fillers are given in the table.

A liquid filler in the pores was specified by the free slip condition on the pore boundaries, which pre-
serves only the orthogonal force on the boundary. The pore boundaries with no filler were computed in a
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similar manner to a free surface. The boundary of each pore was distinguished and calculated explicitly
without using averaging methods.

The excitation was specified by a single plane compressional wave. Its front was 0.02 м away from the
surface of the porous medium. Let us describe the types of waves generated in the interaction of an elastic
wave with a porous medium and the features of wave propagation depending on the level of porosity and
the physical characteristics of the filler. Consider the interaction of a plane wave with a single pore, which
can be empty, water-filled, or solid-filled. Figure 1 shows wave patterns at six times: before, at the time,
and after the front passes the pore for three filler types.

An analysis was performed for the case of no filler (Fig. 1a) and for two filler types: water (Fig. 1b) and
solid (Fig. 1c). The empty pores, which, as was noted in Section 2, were described by the free-boundary
model, do not transmit the elastic wave into the pore. The compressional wave reflects from its surface to
form a primary (compressional) reflected wave (PP) and a secondary (shear) reflected wave forming an
exchange one (PS). After the front passes the pore, it leaves behind a discontinuity, which is gradually
reduced due to diffraction (Fig. 1a). In the case of a water-filled pore, part of the wave pulse is transmitted
into the pore, while the other part reflects. The reflection gives rise to a primary reflected wave (РP) prop-
agating in the opposite direction (upward) and a secondary wave, generating an exchange reflected one
(РS). The elastic energy that was transmitted into the pore is partially transmitted through it, while the rest
of the wave again reflects from the pore boundaries (Fig. 1b). Solid-filled pores reflect less energy toward
the daytime surface than those with other fillers. This is caused by the fact that lower of the physical
parameters of the solid filler are less contrasting against the ambient medium. Accordingly, the front of a
transmitted primary wave decays minimally when propagating through such a pore.

The initial stage of the incident wave front travelling in an elastic continuous medium is presented in
Fig. 2a. When the front reaches the surface of the porous medium, part of the wave is reflected. First, the
waves reflected from the individual pores propagate separately (Fig. 2b), but they soon interfere to form a
single wave packet travelling upward toward the daytime surface (Fig. 2c).

Later, the pattern becomes more complex. The wave penetrates deep into the porous medium and
reflects from the next of “layers” of pores (Fig. 2d). However, travelling in the opposite direction, these
waves again reflect from the upper layers, so multiple waves emerge. Accordingly, the study of the reflec-
tion coefficient is reduced to analyzing the behavior of the reflected waves. In the case of water-filled
pores, in addition to the multiple waves, there appear waves transmitting into the pores and then leaving
them. They also interfere with the reflected waves. As a result, the wave pattern becomes even more com-
plex. Obviously, the wave pattern depends strongly on the degree of porosity, which can be seen in Fig. 3.
Primarily, the intensity of the reflected waves increases with porosity. Moreover, the front of the transmit-
ted wave decays and deforms more quickly.

The filler type also plays an important role in the character of the wave propagation. The difference
between empty and water-filled pores is highly pronounced (primarily, due to the presence or absence of
a continuous medium inside the pores), whereas the difference between liquid and solid fillers is much
less so, although being noticeable (Fig. 4).

It should be noted that the absence of pores in Figs. 4b and 4c is explained by the fact that a grid is not
drawn on them (which hinders the visual analysis due to its fineness). Since the nodal values inside empty
pores are zero, their content is treated by the program as a background, which allows them to be visualized
(Fig. 4a). The pores with a liquid or solid filler receive much more energy, and this transmitted wave
decays more slowly. This can be seen in Fig. 1, as well as in Fig. 4a, where we can see an upper layer of
empty pores, while, for the other media, only the pores nearest to the incident wave can be observed.
Moreover, in water-filled and empty pores, shear waves do not propagate, while propagation of these
waves in a solid filler is significant.

For a quantitative analysis of the problem, including the computation of targeted decay and reflection
coefficients, we have to analyze the one-dimensional graphs of the solution. However, as can be seen in

* Purely technical value required for the computational process.

No. Substance Density , kg/m3 Speed of P-waves Vp, m/s Speed of S-waves Vs, m/s

1 Ambient medium 2623 3371 2620
2 Solid filler 910 2909 1875
3 Liquid filler 1030 1475 50*

ρ
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Figs. 2–4, the solution of the problem is asymmetric. This is associated primarily with the nonuniformity
of the pore distribution inside the rock. To overcome this difficulty, an averaging procedure has to be
applied to the results. For this purpose, we constructed vertical cross sections beginning near the top
boundaries and ending on the bottom boundary of the integration domain. They were processed and aver-
aged, and one-dimensional plots of wave propagation were drawn at regular intervals. In the given model,
we used 11 cross sections with 350 points in each. The distance between the points was 0.04 mm. Thus, at
most two points could lie within a singly pore. Two cross sections were separated by a distance of 0.5 mm.
The horizontal coordinates were chosen with allowance for effects on the boundaries of the porous
medium that are not characteristic for central parts and associated with a sharp drop in the wave amplitude
on the boundary. Thus, the cross section nearest to the boundary was 0.5 mm away from it. With the help
the resulting one-dimensional plots, we can easily observe the propagation of the incident wave, the sep-
aration of reflected waves from it, and its decay (see Fig. 5, which was plotted for empty pores with 15%
porosity). These data are analyzed below.

Fig. 1. Wave patterns of the front propagating through a single pore for different fillers: (a) empty pores, (b) water, and (c) solid.

(а) (b) (c)



1626

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 56  No. 9  2016

KVASOV et al.

According to the conventional definition, the decay factor (Kdec) is the inverse of the time over which
the wave amplitude decays by  times. The decay factor was computed as follows.

1. The time was chosen at which the wave amplitude became e times smaller. Since time in the numer-
ical computation was discrete, we chose the moment when the wave amplitude was the nearest to V = V0/e,
but no less than this value.

= 2.718e

Fig. 2. Propagation of a plane wave through a medium
with empty pores.

(b)(а)

(d)(c)

Fig. 3. Wave pattern at the same time for porosity rang-
ing from 5 to 20%.

(c) (d)

(а) (b)

Fig. 4. Wave pattern at the same time for media with different filler types at 20% porosity: (a) empty pores, (b) water, and
(c) solid.

(а) (b) (c)
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2. The moment was calculated when the wave entered the porous medium. Since the results were also
recorded at a finite number of points, we chose the point nearest in coordinate to the surface of the
explored domain (in fact, already lying inside the medium) and the moment was chosen when the velocity
at this point became nonzero for the first time.

3. The latter quantity was subtracted from the former.

4. The inverse of the quantity obtained in item 3 was computed. This was the decay factor of the wave
in the given medium. The initial amplitude of the incident wave was equal to 0.01 m/s. To compute
the decay factor, according to item 2, we chose the first moment when the wave amplitude became
≤0.0037 m/s.

The computations were performed for media with porosity ranging from 5 to 22%. As was expected,
the wave decayed faster with growing porosity (Fig. 6).

For different filler types, the decay factor as a function of porosity behaves differently. For each filler,
the decay factor was plotted against porosity in percent (Fig. 7).

All the dependences are nearly linear. For low porosity, the plots for different fillers nearly coincide,
which means that they are indistinguishable under these conditions. As the porosity grows, the difference
becomes more noticeable. In the considered range of porosity, the proportionality constant for the decay
factor is approximately equal to 0.6 ± 0.1.

Next, the reflection coefficient from the surface of the porous medium was analyzed as a function of
the degree of porosity and the filler type. According to the conventional definition, the reflection coeffi-
cient is the ratio of the amplitude of the first reflected wave to the amplitude of the incident wave. The
computations were performed as follows.

1. The incident wave amplitude was specified as the average amplitude up to the time when the wave
reaches the porous medium. This time was calculated according to item 2 in the above description of com-
puting the decay factor.

Fig. 5. (a), (b) Propagation of an incident wave in the direction of a porous medium; (c), (d) the formation of the first
reflected wave; (e), (f) separation of the first reflected wave; (g), (h) continued separation of the reflected waves and grad-
ual decay of the incident wave; and (i) the incident wave has nearly reached the lower edge of the porous medium and has
nearly disappeared. Wave processes inside the medium continue.

vy(time = 0)
(a)

vy(time = 0.00000047) vy(time = 0.00000065)
(b) (c)

vy(time = 0.00000074) vy(time = 0.00000082) vy(time = 0.00000098)

vy(time = 0.00000132) vy(time = 0.0000017) vy(time = 0.000003)

(d) (e) (f)

(g) (h) (i)

−0.01 −0.006 −0.002 0.002 0.006
−0.002

−0.004

−0.006

−0.008

−0.010

−0.01 −0.006 −0.002 0.002 0.006
−0.002

−0.004

−0.006

−0.008

−0.010

−0.01 −0.006 −0.002 0.002 0.006
−0.002

−0.004

−0.006

−0.008

−0.010

−0.01 −0.006 −0.002 0.002 0.006
−0.002

−0.004

−0.006

−0.008

−0.010

−0.01 −0.006 −0.002 0.002 0.006
−0.002

−0.004

−0.006

−0.008

−0.010

−0.01 −0.006 −0.002 0.002 0.006
−0.002

−0.004

−0.006

−0.008

−0.010

−0.01 −0.006 −0.002 0.002 0.006
−0.002

−0.004

−0.006

−0.008

−0.010

−0.01 −0.006 −0.002 0.002 0.006
−0.002

−0.004

−0.006

−0.008

−0.010

−0.01 −0.006 −0.002 0.002 0.006
−0.002

−0.004

−0.006

−0.008

−0.010



1628

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 56  No. 9  2016

KVASOV et al.

2. By inspecting one-dimensional plots of the wave velocity, a moment was chosen when the first
reflected wave had formed and begun to move in the opposite direction to the incident wave. The average
amplitude of this wave in its travel toward the top boundary of the integration domain was computed.

3. The reflection coefficient was calculated as the ratio of the first amplitude to the second one.
In contrast to the analysis of the decay factor as a function of porosity (Fig. 6), the two-dimensional

wave pattern is not very informative for a visual analysis of the same dependence for the reflection coeffi-
cient. Accordingly, for illustrative purposes, we present one-dimensional plots fixing the amplitude of the
first reflected wave at the same time for different porosities (Fig. 8).

The type of the filler also plays an important role in the wave reflection from the porous medium. The
reflection coefficient as a function of porosity for various types of fillers is shown in Fig. 9.

All the dependences are also nearly linear. The proportionality constant is approximately equal to
0.8 ± 0.05, which is noticeably higher than that for the decay factor. Moreover, we can conclude that, for

Fig. 6. The wave pattern at the times when the incident wave amplitude reaches 0.0037 m/s for media with porosity of
(a) 5%, (b) 10%, (c) 15%, and (d) 20%.

(a) (b) (c) (d)

Fig. 7. Decay factor vs. porosity in % for various fillers.
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any porosity (including low ones), the reflection coefficient depends on the type of the filler. For example,
in the case of empty pores, it is roughly 20% higher than in the case of liquid-filled pores.

CONCLUSIONS

1. Fundamentally different mechanisms of elastic wave propagation through empty and water-filled
pores were detected. Specifically, an elastic wave is not transmitted into a pore in the former case and is
multiply reflected inside it in the latter case.

2. It was found that the reflection coefficient is nearly a linear function of porosity with a proportion-
ality constant of 0.8. This finding suggests that the use of ref lection amplitudes is promising for the pre-
diction of porosity.

Fig. 8. Amplitude of the first reflected wave for media with various porosities (empty pores).
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3. It was found that the decay factor is also a nearly linear function of porosity, but with a proportion-
ality constant of 0.6.

4. The sensitivity of the reflection and decay coefficients as functions of porosity increases from solid
to liquid fillers and from liquid-filled to empty pores by roughly 20%.

5. As a further study, it seems reasonable to investigate the reflection and scattering of elastic waves in
a porous medium in a three-dimensional formulation, which can change some of the quantitative results
obtained in this paper.
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