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Abstract 
We consider plane-parallel and axially symmetric stationary 
potential flows of real gases. We deduce the motion equations 
in the natural coordinates that are invariant with respect to 
thermodynamic state laws. This allows to extend, almost with 
no change, methods of classical gas dynamics to a broad class 
of urgent problems. We generalize the Chaplygin 
transformation onto flows of real gases (combustion gases, 
superheated steam etc.). In particular, this will allow to apply 
our method of aerodynamic designing for precise constructing 
gas and steam turbines as well as jet nozzles. 
The obtained equation in the Chaplygin variables differs from 
the classical one only by the coefficients that depend on 
concrete thermodynamic laws. The equation of axially 
symmetric flows has in addition right-side part that contains 
the transformation's Jacobian. 
 
Keywords: Gas dynamics, aerodynamic designing, real gas, 
hodograph, 2D-flows, first integral, stationary, potential, 
stream function, separated-free, Chaplygin's equation, well-
posed problem. 
 
Introduction 
Plane-parallel and axially symmetrical potential flows of an 
real gas take place in diverse technical devices. In this work, 
we specify and expand results of our work [1], bearing in 
mind mainly the problem of aerodynamic designing. As the 
most important employments we mean flows of the 
superheated steam and products of fuel combustion in 
turbines, as well as in nozzles of rocket engines. In these 
devices dissociation takes place because of high temperature, 
therefore a quality designing cannot be attained without taking 
into account real nature of gases. 
When designing gas dynamic device, they are searching such 
form of a body that provides a steady, separation-free flowing. 
As a rule, this problem is being solved by selection of suitable 
solutions of the direct problem defined on a set of close 
bodies. (This problem consisting in determination of the flow 
around a given body is assumed to be uniquely solvable.) 
However the hard condition for the flow to be separation-free 
requires rather thin adjustment of search strategy. Therefore 
this approach is not always successful. 
In the book [2] we have developed another method of 
aerodynamic designing based on the hodograph-
transformation of potential 2D-flows of a perfect 
(Clapeyron's) gas. This transformation has turned out 
extremely useful since transition to the velocity variables has 
made the designing problem well-posed. Firstly, hodograph-

image of the flow domain can be set enough arbitrarily. This 
makes possible to satisfy in advance the condition for the 
velocity distribution along a body to be increasing (or not too 
strongly decreasing). By the boundary layer theory [3] this 
provides a separation-free flow at any Re number and 
consequently guarantees adequacy of the mathematical model 
of ideal gas. Secondly, the designing problem can be 
formulated for the Chaplygin equation as well-posed one. 
Initially this method has been employed for designing 
contours of the Laval nozzles of supersonic aerodynamic 
tubes [2]. Namely, the shortest nozzles with angular points at 
intersections of the contours with the rectilinear sonic lines 
have been constructed. These nozzles were manufactured and 
are in exploitation in Russia since 1980; the checking has 
shown that non-uniformity in the Mach number in these tubes 
does not exceed 1%. 
After that the following devices have been designed: 
a lattice of the turbine nozzle guide vanes [4] 
an subcritical lifting wing section for flight with high subsonic 
velocity [5] 
an inlet valve of a piston engine [6],[7] 
a ring-shaped Laval nozzle [8]. 
Now, to expand the method scope, we deduce invariant 
equations of imperfect non-barotropic gases in the physical 
and hodograph variables. (Hodograph-mapping of plane-
parallel flows of barotropic gases was described by R.Mises 
[9].) 
 
 
First integrals of stationary 3D-flows of inviscid fluids 
 
In this section we specify some results given in the 
monograph [9], Chapter V. (Adiabatic flow of inviscid fluid). 
By definition, a first integral is an explicit expression 
satisfying a differential equation. Using first integrals, one can 
simplify mathematical problem. 
From view point of the classical mechanics, homogeneous gas 
is a two-parametric locally-balanced thermodynamic medium: 
all thermodynamic parameters (the temperature T , pressure 
p , density  , interior energy E  and so on) obey classic 

thermodynamics and can be expressed via any two of them 
[10]. We choose entropy S  and enthalpy /I E p    as 
independent variables. By   denote the ratio /p  . We 
consider the differentiable functions ( , )I S  and ( , )T I S  as 
laws of the thermodynamic state. We write down the first law 
of thermodynamics as follows 
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The thermodynamic sound velocity a  is determined by the 
formula 
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It follows from eq.(1) 
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Substituting this formula into eq. (2), we obtain 
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Therefore eq.(1) takes the form 
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A stationary 3D-flow of an ideal imperfect gas obeys the 
equations 

 2div( ) 0,  ( ) 0,  / 2 div( ) 0  (4)p E p         V V V V V V

 

Here u v V i j  is a flow velocity, VV . The functions 
( , ),  ( , ),  ( , )I S p p I S E E I S     are defined by 

thermodynamics of an real (imperfect) gas. 
The full temperature 0 0|VT T   and entropy in the Clapeiron 
gas are known to be constant on stream lines. The analogous 
property takes place in imperfect gas. 
(By definition, the stream lines are vector lines of the velocity 
field 1 2 3( , , )x x xV .) 
Theorem 1. System (4) has two first integrals: entropy S  and 
"full enthalpy" 2

0 0/ 2 |VI I V I     are constants on stream 
lines, i.e. 0 0,  0I S   V V . 
Proof. First transform the energy equation using the 
continuity equation 
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Now consider the momentum equation 
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Multiplying on V  and taking into account eq.(5), we obtain 
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Comparing with eq.(1) written in the form          
      lnE T S      V V V  
we obtain that 0S V . Theorem 1 is proved. 
 
Theorem 2. Let us suppose that: (i) vectors V  and rotV  are 
not collinear in Q and  (ii) ( , ) / 0T I S I    identically. Then 

 V  if and only if 0 ,  I const S const  . 
Proof. Let n  be arbitrary unit vector, n V . It follows from 
eq. (1') that 

2
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Using formula (3), we obtain   
2

0
1 ln ( / 2)p I V T S


           n n n n n  (6) 

Taking scalar product of the momentum equation and the 
vector n , we obtain 

     
 2( ) / 2rot V p      V V n n n  

Taking into account the condition (i) and comparing with 
eq.(6), we have 

      00  0rot I T S     V n n  
By virtue of arbitrariness of vector n  it follows from here that 

0 0  0I S     . Therefore if 2 2
0 0I S    , then 

0I  and S  are collinear, consequently we obtain 

        0   ( )I T S T T S      
This contradicts to the condition (ii). Theorem 2 is proved. 
 
Invariant form of equations of 2D-potential flows 

Transform system (4),(5) for plane-parallel (N=0) and axially 
symmetrical (N=1) potential flows. Let the potential 

( , ),x y u v      V i j  and stream function 
( , ),  ( )Nx y y v u       i j  form curvilinear 

orthogonal coordinate system ( , )  . Here ,i j  are unit 
vectors of Cartesian coordinate system ( , )x y  combined (in 
the axially symmetric flow) with the symmetry axis 0y  . In 
correspondence with the Theorem 2 we have         
    0 0 00 0( ) ,  ( )I I const I S const S       
Let us denote 1 /Vn V . By 2n  denote 1n  rotated on / 2  

counter-clockwise. If iVe V , then 

    1 2cos sin ,  sin cos       n i j n i j  
By 1,2 1,2/ s   n  denote directional derivatives. In the 
points, where 0 V  the first equation of system (4) can be 
transformed to the form 

         
1

1
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s
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Differential geometry says that 

          
1
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 

n  

where 3 1 2/ ( )s    n n . By virtue of the Meusnier 
theorem we have 
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By /M V a  denote the Mach number. It follows from 
eq.(1')  that at 0 0 00,  S S I I                  
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Using eqs.(7),(8), we obtain 
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Taking the scalar products of the second equation (4) with 
2 1,  n n  and bearing in mind that 1 1 2 1( / ) /s s     n n , we 

have 
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Eqs. (9),(10),11) can only be considered locally, as they 
involve directional rather than partial derivatives. Denoting by 

 1,2h  the Lame coefficients, we have 
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By virtue of the Theorem 2 we have             
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It follows from the comparison of the equality 

00 0,|I I Sp p VV    with eq.(11) that 
00 0,|I I Sp    . 

Calculating p , we obtain that 

       00 0,| ,   I I Sp p VV VV       
Using eqs.(12) we express finally the invariant form of 
equations of potential flows written in the natural coordinates 
( , )   

2 ln sin ln( ) (1 ( )) 0,   ( ) 0N NV N VV y M V V y
V y

   
   
   

     
   

 
 (14) 

Here dependence on thermodynamics is determined only by 
eqs. (13). 
Invariance of eq. (14) consists in that that they do not differ 
formally from those for Clapeiron's gas. However unlike 
Clapeiron's gas, in which 1~ ,  /p Va c c const    , the 

sound velocity ( )a V  cannot be expressed via density ( )V . 
Therefore so called "replacement principle" [9],[11] does not 
hold in imperfect gases even in potential flows. In other 
words, relational positioning of stream lines and level lines of 
velocity depends on constants 00 0,I S . 
 
 

Hodograph transformation 
In plane-parallel flows eqs.(14) are homogeneous with respect 
to derivatives, therefore changing ( , ) ( , )V    can be made 
without trouble by using formulas of type 
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( , ) ( , ) ( , ) ( , )V

V V
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   

 

However for axially symmetrical flows this approach is 
impossible as obtained expressions cannot be cancelled by the 
Jacobian ( , ) / ( , )V    . Therefore we apply here another 
approach, which we have used while designing axially 
symmetrical supersonic aerodynamic tubes [2] and an inlet 
valve of the piston engine [12]. 
Let us write equations of stationary potential flows down 
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Differentiating, we obtain 
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where ( ) ( ),  ( ) ln ( ) /Q V V V R V d Q V dV  . 
Let us change places of dependent and independent variables. 
Denoting by D  the Jacobian ( , ) / ( , )x y V   ) we have 
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 
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Substituting formulas (16) into eqs.(15) we obtain 
 ( ) cos sin ( ) sin cos sin
         sin cos cos sin 0 

N
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It follows from first eq. (15) that 
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N
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Resolving system (6),(7) with respect to derivatives 
, , ,V Vx y x y  , we have 
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
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 
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 

   
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 

(19) 

Cross-differentiating the expressions for Vyy  and yy , we 

obtain the equation for the stream function ( , )V   with the 
Chaplygin operator on its left-hand side 

   2 ( ) ( ) (2 cos sin )VV VV VR V R V Q D D N            
(20) 

The Jacobian D  is also expressed via derivatives V  and 

 . Indeed, substituting expressions (18) into equality 

V VD x y x y   , we obtain 

         

2 2

2 2sin
VV R

D QyN
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
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



 

Keeping in mind that 
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we transform eq.(20) to the final form 
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Here ( , ;  ( ), ( ))V V M V     , where ( ),  ( )V M V   are 
determined by eq.(13). We have 
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  










 (23) 

The problem of aerodynamic designing is formulated as a 
boundary problem for eqs.(21)-(23) in some domain in the 
hodograph plane. Integrating expressions (19) for 

, , ,V Vx x y y  , we carry out the mapping into physical plane. 
Arbitrariness of the flow domain allows to optimize device 
being designed. 
 
Acknowledgements 
This work is supported by the federal target program of the 
Ministry of Education and Science of the Russian Federation 
called ”Research and development on the priority directions 
of scientific-technological complex of Russia for 2014-2020”, 
unique identifier for Applied Scientific Research: 
RFMEFI57814X0048. 
 
References 
 
[1]  Shifrin E.G., 2006, "Two-dimensional stationary 

vortex flows of an ideal imperfect gas in natural 
coordinates", Doklady Physics, 51(11), pp. 625-629. 

[2]  Shifrin E.G., and Belotserkovskii O.M., 1994, 
"Transonic vortical gas flows", John Wiley & Sons. 

[3]  Olejnik O.A., 1969, "Mathematical Problems of 
Boundary Layer Theory: Lecture Notes, Spring 
Quarter", University of Minnesota, Department of 
Math. 

[4]  Shifrin E.G., and D.S.Kamenetskii, 1993, 
"Application of the hodograph method to nozzle 
guide vane profiling", Russian Journal of 
Computational Mechanics, 3, pp. 80-107. 

[5]  Shifrin E.G., and Alferov S.A., 1999, "The carrier 
subcritical profile for a high subsonic velocity of 
flight", Doklady Physics, 44, pp.779-783. 

[6]  Pelevin O.V. and Shifrin E.G., 1999, "Profiling the 
contour of an intake valve in an internal combustion 
engine by the hodograph method", Computational 
mathematics and mathematical physics. 6, pp.1023-
1031. 

[7]  Shifrin E.G., and Korneev B.A., 2014, "The 
aerodynamic design of the inlet channel of the four-
stroke engine". IJAER, V.9, 23. pp.21003-21016. 

[8]  Shifrin E.G., and Kim Ch.V., 2005, "Shaping a 
nozzle with a central body by the Chaplygin 
method", Doklady Physics. 50(3), pp.143-146. 

[9]  Mises R., 1958, "Mathematical theory of 
compressible fluid flow", Academic Press, NY. 

[10]  Germain P., 1973, "Cours de Me'canique des Milieux 
Continus", Masson et Companie, Paris. 

[11]  Munk M., and Prim R.C, 1947, "On the multiplicity 
of steady gas flows having the same streamline 
pattern", Proc. Nat. Acad.Sci. USA, 33, pp.137-141. 


