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1. INTRODUCTION 

This paper is devoted to a review of the possibilities of a software commutative package based on the
discontinuous Galerkin method. This method has a number of positive features [1]; in our view, the main
advantage is the possibility to use a high order convergence by spatial coordinates and time due to the wave
specifics of the current problems. 

2. DISCONTINOUS GALERKIN METHOD ON UNSTRUCTURED TRIANGULAR GRIDS

The system of elasticity equations in matrix form in the two�dimensional case for isotropic space in the
tension and speed variables can be written as [2, 3]

 (1)

where u is a vector of 5 unknown variables  In [4] the linear system of equations
of elasticity is written in speed�displacement variables. (1) and further refer to summation by repeating
indices.

The eigenvalues (EVs) of matrices  and  are

Let  be a matrix of right�hand eigen vectors of matrix  The explicit form of matrices  
 is given in [2, 5]. To construct a numerical scheme, we consider a system of Eqs. (1). The integration

domain is divided into triangles  and numerated. Consider the case when matrices  and  are

constant within  Within each triangle the solution of system (1) is numerically approximated as  by

means of the linear combination of  time independent polynomial functions  of an

order not higher than N, forming the basis with carrier  and time�dependent through coefficients

  On the element’s boundaries gaps in the numerical solution are toler�
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ated. In [6] a modification of this scheme is proposed, when inside each triangle  the Jacobeans 
and  are functions of the coordinate and are also decomposed by the system of basis functions .
This modification will be important in problems with continuously changing parameters of a medium,
whose gradient is high, in the computation on a coarse computation grid. 

Multiply (1) by basic function  and integrate by triangular 

 (2)

Integration (2) by parts yields

 (3)

The second term of Eq. (2) could not be integrated because of the discontinuity of solution  and
matrices  and  on the cell boundary in the general case. This problem is solved by the introduction

of the numerical flow function through the edge of triangle  A great number of possible variants in
assignment of a numerical flow are known [1, 7–11]. In our case, it is most reasonable [1, 7, 10] to choose
the upwind flux, which reflects the wave process of the system of equations being solved. Finding the
upwind flux amounts to solving the problem of the Riemann arbitrary discontinuity decay problem [12].
In our case of the isotropic space, the Riemann multidimensional problem can be roughly reduced to a
one�dimensional problem (the x�split Riemann problem [8]). In the case of linear systems of hyperbolic
equations the Riemann one�dimensional problem has an analytical solution [1, 7]. For the case of the vis�
cosity and acoustics, the Riemann problem is solved in [12]. 

In (3) behind  the sides of triangle  are denoted,  and behind  the flux through

edge j of cell  in the global system of coordinates is given by the following formulas:

(4)

(5)

(6)

(7)

Here index  corresponds to the triangle neighboring  through the common side with number j; 
is the matrix of transition to the system of coordinates of edge (SCE)  in which axis  is codirected

with the outside normal of the edge (see Fig. 1);  is a matrix composed of eigenvectors of matrix 

corresponding to negative EV  and eigenvectors  corresponding to positive EV    are

the limits of the numerical solution on the inside and outside of edge j of triangle  respectively, in СКР

 [2];  is the solution of the Riemann one�dimensional problem in СКР  [12]; and  is the
numerical flux in SCE 

Integrating (4), (5), (6), and (7), we obtain the end formula for 
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where 

Similar approaches to the construction of a numerical flux are also used in [4, 13, 14].

After discretization by spatial variables, Eq. (1) assumes the form 

 (9)

Next, Eq. (9) is integrated by time, for example, by the Runge�Kutta method of a high order of accu�
racy. By using certain procedures [2] the integrals by basis functions can be calculated beforehand, con�
siderably increasing the efficiency of the scheme. The described scheme allows us to solve the original sys�
tem of equations with an arbitrary order of approximation by space, actually constrained by no more than
machine accuracy. The order of approximation by time is determined by the used integrator and it is also
limited only to machine precision. 

The conditions of adhesion [4], sliding, and solid friction [13, 15] are taken into account when solving
the Riemann one�dimensional problem. The boundary conditions are implemented by means of the
method of ghost cells [7] and the Riemann inverse problem. 

In this work as a system of basis polynomes the Lagrange polynomes [1] were used. Integration by time
was made by means of the Dormand�Printz 7�stage integrator of the 5th order with the time adaptive step.
In [2, 13] the ADER scheme is used for integration.

3. PARALLEL IMPLEMENTATION OF THE NUMERICAL METHOD

The above�described numerical method is totally local and well suited for parallelization [16, 17]. The
method was implemented in [18] using the OpenMP and MPI techniques for calculations on highly pro�
ductive computation systems. To construct the dependences of acceleration on the number of cores (see

Fig. 2) once by means of the library triangle [19], a computation grid consisting of  triangles was
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Fig. 1. Element of the calculation grid.
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built, which were then divided into computation domains with the use of the Metis library [20]. Polynomes
of the 1st order made up basis 

Computations were performed at the information computation center (ICC) of Novosibirsk State
University. 

Also, to increase the speed of the software programs in situations where the sizes of triangles are highly
varied, a technique of the multiple step by time was used [21–23], implemented for both one�stage and
multistage integrators. 

4. JOINT TASKS OF ELASTICITY AND ACOUSTICS 

There is a rather large class of problems in which it is needed to simulate the contact of viscous and
acoustic media: problems of seismic prospecting, defectoscopy, traumotology, earthquake research, and
detecting underwater objects. In this work an approach from [4] was used, consisting in analytically solv�
ing the Riemann problem on the contact of acoustic and elastic media. This solution turned out to coin�
cide with the solution of the Riemann problem for two contacting elastic media (8), if we assume that the
shift module  in matrices  and  A similar approach is described in [5]. Matrix  in the case
of contact, when at least one of the contacting media is acoustic, becomes degenerated. The symbolic

computation of the expression  from the formula for flux  (8) makes it possible to
avoid the 0/0 kind of uncertainty.

4.1. Shelf seismic prospecting. Currently, the shelf seismic prospecting in the shelf of the Arctic seas is
one of the promising lines associated with the high potential of hydrogen carbons in the Northern regions.
The discontinuous Galerkin method allows the use of polynomes of a high order, thereby reaching a high

.lΦ

0µ = pqA .pqR pqR

( )( ) ( ) 1m m
pq ql ql lsR R−

Λ − Λ
,h j

pF

200

150

100

50

0 250200100500 150

Theory

A
cc

el
er

at
io

n

Number of cores

Experiment

Fig. 2. Dependence of acceleration on the number of cores during the joint use of the OpenMP and MPI technologies.

Fig. 3. Wave picture in a multilayer medium.
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Fig. 4. Krauklis waves in a fluid saturated rift.

Fig. 5. Response from a fluid saturated rift.

Fig. 6. Response from an infinitely thin crack. 

order of convergence by the spatial coordinates, which is critical in modeling wave processes in heteroge�
neous media, which, in turn, play the key role for the problems of seismic prospecting. 

Figure 3 shows an example of the computation of a wave picture initiated by a series of synchronous
spherical explosions in a multilayer medium, whose upper layer has acoustic characteristics with the
parameters of the water and the rest of the characteristics are elastic ones, corresponding to soils [24].

Figure 3 shows value  where v is the absolute value of speed to increase the visi�
bility of the image. In the calculation the polynomes of the 8th order were used. 

4.2. Study of a fluid saturated crack model in seismic prospecting. As a model of oil containing cracks
in a numerical study of responses in the problems of seismic prospecting, the model [25, 26] of an infi�
nitely thin fluid saturated crack is used, the main advantage of which is the absence of the need for a high
cross partition of the computational grid in the fractured area, which leads to a considerable increase of
the computation time. The difference of wave responses from the fluid saturated snap with dimensions of
1 m × 100 m (see Fig. 5) and infinitely thin crack (see Fig. 6) was studied at similar time moments. There

( ) ( )
2 2,x y∂ ∂ + ∂ ∂v v
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is a difference in wave patterns, which results from the finite size of the snap in the former. Figure 4 shows
the Krauklis waves, typical of a crack of finite size [27]. In the calculation polynomials of the 4th order
were used. 

In the future, we plan to investigate the effect of the finite size of the crack on the response to the cracks
with the ratio of the longitudinal and transverse dimensions of 1 : 103–1 : 104 that have been already found
in the practical problems of seismic prospecting.

4.3. Modeling the perturbations from underwater objects. The spectrum of problems of hydraulic
acoustics is large [28]. One of them is the problem of the location of underwater objects, solved by active
and passive methods. 

In this work we have carried out a numerical modeling of the passive method of detection. We have
dealt only with the direct problem of generating a perturbation by the object. Figure 7 shows a wave picture
of perturbations in a water column as the result of a low frequency vibration of the object’s casing. In the
calculation the polynomes of the 4th order were used. 

5. CALCULATION OF DYNAMIC CONTACT BOUNDARIES

For calculating problems with dynamically changing contact conditions, a method was proposed with
the following features:

• The dynamic contact condition is mathematically equivalent to the static in cases of conformal con�
tacts.

• In the absence of a contact, the condition is equivalent to a free boundary.
• In the case of nonconformal contacts, all the basis functions providing for a high order of interpola�

tion are used. 

Fig. 7. Wave picture from a low frequency vibration of the object plating.

Fig. 8. Imaginary cell.
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• The implementation of the method on the Lagrange basis polynomes permits us to avoid high costs
for the operations of numerical integration for the deduction of flows on dynamically changing contact
boundaries. 

In order obtain this mixed contact�boundary condition, it has been found that the method of the free
boundary calculation proposed in [2] is mathematically equivalent to the calculation of the contact con�
dition with the imaginary cell [7], conformally connected to the boundary cell, the solution in which is
given in a special way, with the use of the solution of the reverse Riemann problem of a discontinuity decay
on the boundary. This interpretation is illustrated in Fig. 8. 

The solution in the imaginary cell is determined in its basis points marked in Fig. 8 in white based on
the known solution in the considered cell in such a way that on the boundary of the imaginary and actual
cells the necessary boundary condition is fulfilled. The specific form of the necessary transformation is
found, for example, in [1]. 

In the proposed method of dynamic contacts, this method is extended, but the solution in the basis
points of the imaginary cell is built based on the solution in both contacting surfaces (see Fig. 9).

If the reference point of the imaginary cell falls into a cell of the contacting grid, the solution in the
reference point is obtained by interpolation in this cell. Otherwise, the solution is taken from the point
corresponding to the reference boundary cell. The values in the nodes of the imaginary cell are decompo�
sition coefficients at the basis polynomes, from which at the stage of precalculation it is possible to count
the flows through the corresponding facets of the cell. An important feature of this approach is that the
preliminary calculations can be used even in a dynamically changing contact boundary due to the fact that
the imaginary cell is always conformal with the boundary one. 

The developed scheme is equivalent to the scheme of the calculation of static contacts in the case of
the conformal disposition of contact cells and the free boundary in the case of the absence of contact,

Fig. 10. Slabbing plate.

Fig. 9. Construction of the solution in an imaginary cell on the contact boundary. 
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whose properties are now already known in detail. On the other hand, in the case of nonconformal con�
tacts, the proposed scheme is already known to be fairly accurate and effective in the circle of problems to
which it has been applied. 

6. 2�COAST CRACK MODEL IN PROBLEMS OF THE DESTRUCTION OF SOLIDS

The simulation of the deformation of solids with their consequent destruction is an actively developing
area of mathematical modeling. In this work, a version of the development of the one�coast crack model
proposed in [29], applied in [30, 31], is proposed. Routinely, the two�coast model of a crack is used based
on the finite element model (FEM) and has received further development (GFEM et al. [32]). A similar
technique of the split of the difference grid by nodes with local restructuring is described in [33]. 

The core of this approach lies in the fulfillment of some criterion of destruction, for example, by the
primary stresses for a pair of contacting cells, the contact between them is changed by a pair of free bound�
aries, which are next modeled independently. Due to the above�described calculation method of dynamic
contact boundaries, in the process of calculation, the crack’s edges can multiply converge and again
diverge. During the collapse of the crack between the two sides, the contact condition (sticking, dry fric�
tion, slip) is set again. 

The proposed discrete collapse model was combined with the continual model of collapse based on the
Mises plasticity criterion [29], reflecting transition into the fractured state. In the separation of an indi�
vidual cell, when it has a free boundary on each of its sides, it is given the status “crumbled” and the orig�
inal contacts of adhesion with the neighboring cells are set. The fractured cells cannot counteract the
strain and the parameters of these cells are corrected in a special way: if the Lame parameters before the

collapse had had values  and  after the collapse the shift module of the disrupted material was scaled

 times:  The module of the compression of all sides of the material is sustained after the
collapse, which allows computation of λ [30].

For a description of the behavior of the investigated material objects, the rheological models of the lin�
ear�elastic and elastic�plastic media (Prandtl�Reis model with the Mises and Mises�Shleihert plasticity
conditions [30]) were used. 

Here is the result of the thrust of a steel bead on glass (Fig. 8) and a similar numerical experiment (Fig.
10), in which the thrust was at an angle of 10o relative to the vertical. Similar pictures can be viewed, for
example, when a stone hits the glass of a moving car. 

In the numerical experiment the polynomes of the 2nd order were used. 
This approach can have advantages, for example, in modeling high speed hits of fragile bodies when

the wave effects are considerable or in the calculation times when the crack opening is not small. 

7. FURTHER RESEARCH 

The basic direction for further research is to solve the same problems but now in a three�dimensional
statement, which imposes higher requirements on the effectiveness of implementation. It is planned to
investigate the problem of regularizing the numerical method [34–36], which is especially appropriate for
the simulation of destruction. In [15, 30], variants are proposed in the regularization of the numerical

0
λ

0,µ

0.1α ≈
0.μ = αμ

Fig. 11. Result of the numerical modeling of the inclined shock of a metallic ball on glass. 
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scheme for modeling the problems of the destruction of solids. It is also planned to use more complicated
models of environment destruction. 

8. CONCLUSIONS

In this work, a numerical scheme is described allowing calculations of acoustic�elastic problems of the
wave dynamics of elastic media with inhomogeneous inclusions, complicated dynamic contact bound�
aries, and dynamic disruptions. This scheme was implemented in a software package recommended for
the solution of a number of relevant problems of seismic prospecting, hydro�location, and failure theory
and which has proven to be efficient in parallelization in operation on highly productive clusters with a
distributed memory. 
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