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Abstract: A class of two-point compact di�erence schemes of the second–third orders of accuracy on a two-
point coordinate stencil is considered for a one-dimensional transfer equation. All di�erence schemes are
basedon interpolationpolynomials constructed onagiven stencil. Basedon thebehaviour of the solution and
the character of interpolation polynomials, we propose hybrid compact di�erence schemes of 2–3rd orders of
accuracy on smooth functions producing solutions weakly smoothing the front of discontinuities. The study
of grid convergence for the constructed di�erence scheme is carried out and the propagation of a pulse of
complex form is simulated numerically for studying the behaviour of the di�erence scheme on discontinuous
solutions.

Keywords: Compact schemes, grid-characteristic methods, monotone methods, advection equation.

MSC 2010: 35L65

DOI: 10.1515/rnam-2016-0033
Received October 30, 2015; accepted October 11, 2016

Hyperbolic systems of partial di�erential equations are the base for many mathematical models for solution
of various dynamic problems. In order to model physical processes correctly, numerical methods should be
stable andhave satisfactory accuracy.Oneof directions in construction of numericalmethods of higher orders
of accuracy is the use of extended systems of equations [2]. The schemes constructed for such systems use
di�erential corollaries of original equations [3, 6, 7, 11], which allows us to use stencils with the minimal
number of nodes, but preserve a higher order of accuracy. Schemes of such type are usually called compact
ones [14].

Constructing compact di�erence schemes for systems of hyperbolic equations, one generally uses three-
point [11, 14] and two-point [7, 10] stencils in the coordinate direction. The maximal order of schemes on a
two-point stencil presented in literature for systems of hyperbolic equations is four [7, 10]. Integral corollaries
fromoriginal di�erential equationswere used in [10], that allowed the authors to propose amonotone scheme
of the �rst order in time and amonotonized scheme of the third order in time and both those schemes have the
fourth order in the coordinate. In review [7], the fourth order of a scheme was also achieved due to the use of
the original system and its di�erential corollary. The di�erence scheme for the original systemuses the values
from the di�erential corollary on two time layers. The scheme is monotonized and uses a grid-characteristic
criterion of monotonicity [16].

In the present paper we consider compact schemes of the second–third orders of accuracy constructed
with theuse of interpolationpolynomials. The solution to the scheme is approximatedbya set of interpolation
polynomials of di�erent degrees and then, in order to providemonotone behaviour, the scheme is hybridized
[4, 9] by choosing one or other polynomial depending on the character of solution. We use the hybridization
based on the grid-characteristic criterion [16] and the criterion based on determination of the extremum of
an interpolation polynomial on the chosen interval, the latter criterion is proposed in this paper. All schemes
are constructed on the minimal two-point coordinate stencil and hence they relate to the class of bi-compact
[10] di�erence schemes. As the result of such construction of the di�erence scheme, we obtained amonotone
behaviour of the di�erence scheme and a weak ‘blur’ of the front of a discontinuous solution in time.
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1 Extended system of equations
Let us consider the simplest homogeneous linear transfer equation

ut + λux = 0. (1.1)

Weassume that λ = const > 0because for negative λ all constructions are similar and canbe implemented
with the change of λ by −λ and by using the grid stencil symmetric in x with respect to the point (tn , xm).

Alongwith equation (1.1) we consider its di�erential corollary. In addition to u(t, x)we introduce the new
required function ν(t, x) = ux(t, x) and, di�erentiating equation (1.1) with respect to x, we obtain for ν(t, x)
the similar transfer equation

νt + λνx = 0. (1.2)

2 Interpolation polynomials
We consider the extension of di�erence schemes on a two-point stencil (Fig. 1) with the spatial mesh size h
and time step τ:

(tn , xm−1), (tn , xm), (tn+1, xm). (2.1)

We use the coordinate systemwhere the point (tn , xm) has the coordinates (0, 0) and the point (tn , xm−1)
has the coordinates (0, −h), respectively.

In the interval (−h, 0)we consider interpolation polynomials f(x) approximating the function u(x). Below
we omit the index in time where this is possible. The solution to equation (1.1) can be obtained at the time
step n + 1 as

un+1m = f(−λτ)

and the solution to the extended system is

νn+1m = f �(−λτ).

The maximal degree of a polynomial that can be constructed on this stencil is three. Represent this poly-
nomial in the form

F3(x) = a3x3 + b3x2 + c3x + d3 (2.2)

for original system (1.1); in this case di�erential approximation (1.2) is approximated by its derivative

F�3(x) = 3a3x
2 + 2b3x + c3. (2.3)

The coe�cients of this polynomial can be obtained from the conditions

f(−h) = unm−1, f(0) = unm
f �(−h) = νnm−1, f �(0) = νnm .

(2.4)
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Figure 1. Stencil of the di�erence scheme.
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Based on (2.4), we get
a3 =

νm + νm−1
h2
−
2(um − um−1)

h3

b3 =
2νm + νm−1

h
−
3(um − um−1)

h2
c3 = νm
d3 = um .

The di�erence scheme using polynomial (2.2) was apparently �rst proposed in [17] and described both
for linear, and quasilinear systems of hyperbolic equations. In the original paper this scheme was called
CIP (Cubic-Interpolated Pseudo-particle); below we also use this name. In further works the CIP scheme was
extended to themany-dimensional case and some improvements of this schemewere alsoproposed [18]. In all
mentioned papers the CIP scheme is used without restrictors, or with a restrictor constructed on an extended
stencil using also the point (tn , xm+1) [17]. In this paper we propose amethod to obtain amonotone behaviour
of the scheme by decreasing the degree of interpolation polynomial (2.2) in the domain of discontinuous
solutions and using compact stencil (2.1).

The results of application of the CIP scheme for a pulse of complex form is presented in Fig. 2b.
Along with polynomial (2.2), we consider polynomials of the second order of accuracy and denote them

by F2l(x) and F2r(x):

F2l(x) = a2lx2 + b2lx + c2l (2.5)
F2r(x) = a2rx2 + b2rx + c2r . (2.6)

The polynomial F2l(x) is constructed with the use of the points um−1, um , νm−1, and for F2r(x)we use the
points um−1, um , νm. The coe�cients of polynomials (2.5) and (2.6) can be calculated from the conditions

F2l(0) = um , F2l(−h) = um−1, F�2l(−h) = νm−1
F2r(0) = um , F2r(−h) = um−1, F�2r(0) = νm .

They have the following form:
a2l =

um − um−1
h2
−
νm−1
h

b2l =
2(um − um−1)

h
− νm−1

a2r =
νm
h
−
um − um−1

h2
b2r = νm

c2l = c2r = um .

The polynomials for the di�erential corollary can be obtained by di�erentiation of (2.5) and (2.6), i.e.,

F�2l(x) = 2a2lx + b2l (2.7)
F�2r(x) = 2a2rx + b2r . (2.8)

The schemes constructed on these polynomials have the second order of accuracy, but possess a no-
ticeable dispersion. Below we denote the schemes using polynomials (2.5) and (2.6) by CIP2L and CIP2R,
respectively.

Alongwith these polynomials we consider the following �rst order polynomial on the considered stencil:

F1(x) = a1x + b1. (2.9)

Based on conditions on the interval boundaries

F1(0) = um , F1(−h) = um−1
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we calculate its coe�cients
a1 =

um − um−1
h

b1 = um .

The approximation by this polynomial is a �rst order scheme of CIR (Courant–Isaacson–Rees) type. Di�eren-
tial corollary (1.2) is approximated in this case by the formula

F�1(x) = a1.

Denote this scheme by CIR.
Further, based on these polynomials, we propose approaches to construct compact di�erence schemes

on stencil (2.1) in order to obtain amonotone behaviour of the CIP scheme by choosing di�erent interpolation
polynomials depending on the behaviour of solutions of those schemes.

3 Study of the behaviour of interpolation polynomials
Approximate the �rst derivative of the function u(t, h) in the interval (−h, 0) by the �rst order formula

ν∗ = a1 = (um − um−1)/h.

Below we consider the behaviour of di�erent polynomials depending on required values on the chosen
stencil.

The signs of ν∗, νm, and νm−1 coincide, that means the ful�llment of the conditions

νmνm−1 ⩾ 0, ν∗νm ⩾ 0. (3.1)

In order to increase the order of accuracy, we may use the cubic polynomial F3(x), however, under the
ful�llment of condition (3.1) the function F3(x) can have extrema in the interval (−h, 0). The condition of
existence of an extremum is equivalent to the condition of sign change for the derivative in the considered in-
terval. For example, wemaywrite this condition in the following form (the value at the vertex of the parabola
does not coincides in sign to its values on the boundaries of the interval and the vertex of the parabola lies
inside the interval):

− h ⩽ x0 ⩽ 0, F�3(x0)ν∗ < 0 (3.2)

where x0 = −b3/(2a3) is the coordinate of the vertex of the parabola.
If condition (3.2) holds true, we have to decrease the degree of the polynomial. Consider the applicability

of second degree polynomials. If

min(νm , νm−1) ⩽ ν∗ ⩽ max(νm , νm−1) (3.3)

then polynomials (2.5) and (2.6) lie at di�erent sides from line (2.9) on the whole interval (−h, 0). A convex
combination of these polynomials is also a second degree polynomial, i.e.,

F2lr(x) = αF2l(x) + (1 − α)F2r(x) (3.4)

for all 0 ⩽ α ⩽ 1. Since the polynomials lie at the di�erent sides from line (2.9), we can take α so that the
condition F2lr(x) = F1(x) holds in the interval (−h, 0) and, using a monotone polynomial of �rst degree,
we can approximate the solution by second order polynomials. This is the case because the coe�cient at x2

vanishes in polynomial (3.4).
If condition (3.3) does not hold, then polynomials (2.5) and (2.6) lie at the same side from line (2.9) in the

interval (−h, 0). In this case wemay take the polynomial that has no extremum in the interval (−h, 0). If both
polynomials have an extremum, wemay use �rst order scheme (2.9). However, as shown by test calculations,
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at least for linear equations, we may take the polynomial constructed from the derivative lying closer to ν∗;
this condition can be written as

F(x) =
{
{
{

F2l(x), ∆m−1 ⩽ ∆m
F2r(x), ∆m−1 > ∆m

(3.5)

where ∆i = |νi − ν∗|. The use of such approach provides the second order of accuracy, but does not guarantee
the absence of an extremum on the segment.

Let us consider the next case. The signs of νm and νm−1 are di�erent, i.e.,

νmνm−1 < 0. (3.6)

In this case, using interpolation of order exceeding one, we always have an extremum on the considered
segment.However, since thederivatives change their signs, thepresence of an extremum isnot anon-physical
oscillation and, as shownby the test calculations, the use of polynomials of degrees greater than one does not
cause non-physical oscillations in the solution. Under the same conditions, the second degree polynomials
lie at the same side from the line determined by polynomial (2.9) in the interval (−h, 0); due to this fact, we
cannot use their convex combination. However, we can use the third degree polynomial (2.2), or choose the
second degree polynomial from condition (3.5). In order to obtain a monotone solution, we have to use the
�rst order interpolation (2.9).

Finally, let the signs of νm, νm−1 be the same, but di�er from the sign of ν∗, i.e.,

νmνm−1 ⩾ 0, ν∗νm ⩽ 0. (3.7)

Since the third degree polynomial (2.2) has two extrema in the interval (−h, 0), it cannot be used. The sec-
ond degree polynomials (2.5) and (2.6) have extrema in the considered interval too, however, they lie at the
di�erent sides from line (2.9). Using their convex combination (3.4), we can always set the coe�cient at the
quadratic term to zero in the obtained polynomial and then use monotone linear polynomial (2.9), which
gives the second order of approximation in this case.

Based on the above analysis and choosing one or other polynomial depending on the character of the
solution, we can construct a hybrid scheme producing the solution possessing monotone behaviour.

4 Hybrid schemes
The hybridization considered in this paper consists in the choice of some or other interpolation polynomial
depending on the character of the solution on the basis of the fact presented above.

Let us consider two hybrid schemes.

4.1 Grid-characteristic monotonization

Grid-characteristic schemes are based on the use of the characteristic criterion ofmonotonicity [7, 8], namely,

min(um , um−1) ⩽ un+1m ⩽ max(um , um−1). (4.1)

A detailed description of the di�erence schemes construction based on the use of characteristic criterion on
monotonicity (4.1) (including those for extended systems of equations) was presented in [7]. This paper also
presented �nite-di�erence schemes of third and fourth orders of accuracy for extended systems of equations
(1.1) and (1.2) on compact stencil (2.1). In contrast with [7], in this paper we use an interpolation polynomial
for solving system (1.1) and its derivative for solving di�erential corollary (1.2). In [7], systems (1.1) and (1.2)
were solved independently using various di�erence schemes. In this case the hybridization of schemes for
the original system of equations and its di�erential corollary is performed independently.
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The hybridization based on grid-characteristic criterion (4.1) is performed for schemes described in this
paper in the following way. We calculate the values un+1m with the use of some interpolation polynomial; the
ful�llment of the given monotonicity criterion is checked for this value. If the criterion is hot ful�lled, the
degree of the polynomial is decreased until it is ful�lled. This operation is performed successively for the
polynomials F3(x), F2l(x), F2r(x), and F1(x). After we have chosen the polynomial, for interpolation we cal-
culate the value νn+1m by using its derivative. Below we denote this scheme by BIS1 (bi-compact interpolation
scheme).

4.2 Hybrid scheme of the third order of accuracy

In this paper we also use the hybridization of the scheme of third order of accuracy on the basis of the be-
haviour of polynomials in the considered interval. The scheme is constructed in the following way. If condi-
tions (3.1) and (3.2) hold, we use the scheme of the second order on the basis of (3.5). If (3.1) hold, but (3.2)
does not, we use third order scheme (2.2). If condition (3.3) holds, we use �rst degree polynomial (2.9), but,
as shown above, it provides the second order. If condition (3.6) holds, we use second degree polynomials on
the basis of (3.5). Finally, if condition (3.7) holds, we use �rst order polynomial (2.9) also providing the sec-
ond order. Denote this scheme by BIS2. The scheme was tested on initial data representing pulse of complex
form (5.1) for di�erent values of the Courant number. In all these cases the scheme demonstrated amonotone
behaviour.

5 Testing of schemes
We tested the qualitative behaviour of di�erence schemes for the following initial data representing a pulse
of complex form [1, 5, 12]:

u(0, x) =

{{{{{{{{{
{{{{{{{{{
{

exp(− ln 2(x + 0.7)2/0.0009), −0.8 ⩽ x ⩽ −0.6
1, −0.4 ⩽ x ⩽ −0.2
1 − |10x − 1|, 0.0 ⩽ x ⩽ 0.2
(1 − 100(x − 0.5)2)1/2, 0.4 ⩽ x ⩽ 0.6
0, otherwise.

(5.1)

This initial condition consists of a discontinuous rectangular pulse, a triangular pulse, a pulse of Gaussian
distribution form, and a half-elliptic pulse. We used the grid consisting of 200 nodes with periodic boundary
conditions. The solution is presented for the time moment t = 4.0, the time step was taken relative to the
Courant number 0.4. The rate of transfer was λ = 1 in all tests. The results for all schemes are presented in
Fig. 2.

As seen from the graphs in Fig. 2, the schemes constructed on polynomials of degree exceeding one pos-
sess the property of dispersion. In this case the third order scheme has the least oscillations and in some
cases can be applied without monotonization. Hybrid schemes have monotone behaviour, namely, BIS1 is
monotone with respect to the grid-characteristic criterion, BIS2 also demonstrates monotone behaviour and
for short pulses its behaviour is better than that of BIS1. The schemes demonstrate similar results for other
Courant numbers, there are no oscillations for BIS1 and BIS2, as well.

Norms of errors are presented for this test in Table 1. We used the following norms: L1 = ∑i |xi|, L2 =
(∑i x2i )

1/2, L∞ = max |xi|, xi = ui − utheori , ui is the solution obtained numerically, utheori is the exact solution,
i is the grid node number, the summation is taken over all nodes.

As seen from calculations, the CIP scheme provides the least norms of errors. However, the calculations
performed by BIS2 demonstrate the least errors among non-oscillating schemes.
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a) b)

c) d)

e) f)

Figure 2. Numerical (dots) and exact (solid line) solutions to linear transfer equation (1.1) for initial data (5.1) after 1000 steps of
the di�erence scheme. a) CIR; b) CIP; c) CIP2L; d) CIP2R; e) BIS1; f) BIS2.

L1 L2 L∞
CIR 0.562 0.092 0.810
CIP 0.055 0.019 0.389
CIP2L 0.262 0.050 0.635
CIP2L 0.271 0.051 0.644
BIS1 0.068 0.024 0.417
BIS2 0.054 0.020 0.429

Table 1. Norms of errors for di�erent schemes.

5.1 Pulse of right triangular form

In addition, we carried out the test on pulse of right triangular form (5.2):

u(0, x) =
{
{
{

(x + 0.4)/0.8, −0.4 ⩽ x ⩽ 0.4
0, otherwise.

(5.2)
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a) b) c) d)

Figure 3. Numerical (dots) and exact (solid line) solutions to linear transfer equation (1.1) for initial data (5.2) after 1000 steps of
the di�erence scheme. a) CIR; b) CIP; c) BIS1; d) BIS2.

The other parameters were similar to those of previous test. The results of CIR, CIP schemes and for BIS1,
BIS2 are presented in Fig. 3.

The CIP scheme gives small oscillations, but better describes the position of the top point of the triangle.
The behaviours of the BIS1 and BIS2 schemes are similar, they produce no oscillations, but the BIS1 scheme
‘cuts’ the top of the triangle a few more.

5.2 Grid convergence on a uniform grid

Table 2 presents the results of the grid convergence testing for the considered schemes.
The initial conditions were speci�ed by the pulse

u(0, x) = sin4(πx)
ν(0, x) = 4π sin3(πx) cos(πx)

(5.3)

in thedomain [−1, 1]andby theperiodic boundary conditions. TheCourant numberwas0.2, the calculations
were performed until the time moment t = 2.0. As seen from the results of testing, the numerical order of
convergence of the BIS2 scheme is greater than for BIS1 and corresponds to the order of the CIP scheme also
in the norm L∞. The order of convergence was calculated by the formula p = (log(Eh) − log(Eh/2))/ log(1/2),
where Eh is the norm of error for a grid with the step h. In this case, BIS2 does not demonstrate oscillations
typical for the CIP scheme.

5.3 Grid convergence on a grid with irregular steps

In the previous section we have shown that BIS2 demonstrates the third order of convergence on a uniform
grid. In this section we show that the order of this scheme is the same for non-uniform grids. We use grids
similar to those of original paper [18] considering the CIP scheme. The parameters of grids are presented
below. In the case of translation of the ith node we assume h = ∆xi in calculations formulas.

In the �rst case the step of the grid changed abruptly in the passage from one grid node to another. The
step was taken from the relation ∆xi = hr(i), where h = 2.0/∑Ni=0 r(i),

r(i) =
{
{
{

1.0, IL ⩽ i ⩽ IR
α, otherwise.

The coe�cient α and the number of the grid nodes N varied as α = {0.5, 1.0, 1.01, 1.05, 1.2, 1.5} and N =
{100, 200, 400, 800, 1600}, respectively. The grid parameters were IL = N/4, IR = IL + 20NM − 1, NM =
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N L1 order L1 L∞ order L∞
CIR 100 3.28e-01 — 3.49e-01 —

200 2.00e-01 0.71 2.25e-01 0.63
400 1.13e-01 0.82 1.32e-01 0.77
800 6.06e-02 0.90 7.18e-02 0.87

1600 3.14e-02 0.95 3.76e-02 0.93
CIP 100 5.98e-04 — 5.78e-04 —

200 7.51e-05 2.99 7.26e-05 2.99
400 9.40e-06 3.00 9.09e-06 3.00
800 1.18e-06 3.00 1.14e-06 3.00

1600 1.47e-07 3.00 1.42e-07 3.00
CIP2L 100 2.13e-02 — 2.17e-02 —

200 5.37e-03 1.99 5.43e-03 2.00
400 1.34e-03 2.00 1.36e-03 2.00
800 3.36e-04 2.00 3.39e-04 2.00

1600 8.39e-05 2.00 8.48e-05 2.00
CIP2R 100 3.10e-02 — 3.17e-02 —

200 7.98e-03 1.96 8.09e-03 1.97
400 2.01e-03 1.99 2.03e-03 1.99
800 5.03e-04 2.00 5.09e-04 2.00

1600 1.26e-04 2.00 1.27e-04 2.00
BIS1 100 3.42e-03 — 2.37e-02 —

200 6.67e-04 2.36 7.97e-03 1.57
400 1.39e-04 2.27 2.91e-03 1.45
800 2.92e-05 2.25 1.03e-03 1.50

1600 5.92e-06 2.30 3.55e-04 1.54
BIS2 100 5.72e-04 — 8.47e-04 —

200 7.24e-05 2.98 9.81e-05 3.11
400 9.17e-06 2.98 1.16e-05 3.08
800 1.16e-06 2.99 1.39e-06 3.06

1600 1.46e-07 2.99 1.68e-07 3.05

Table 2. Grid convergence.

N/100. The other parameters such as the time step, the number of steps and the formof the pulsewere similar
to the previous test.

The results of testing for BIS2 are presented in Table 3. As seen from calculations, the scheme retains the
order for all values of the parameter α.

In the second case the grid step varied smoothly according to the law

r(i) =
{
{
{

1.0 + β sin(2π(i − IL)/(IR − IL)), IL ⩽ i ⩽ IR
1.0, otherwise

where β = {0.0, 0.05, 0.2, 0.35, 0.5}. The tests were performed for the same sizes of grids as in the previous
case. The grid parameters were IL = N/4, IR = IL + 60NM − 1, NM = N/100.

The results of theBIS2 scheme testing are presented inTable 4. The scheme retains the order of the scheme
for all values of β.

5.4 Grid convergence in the case of discontinuous solution

In addition, we carried out tests of grid convergence in the case of discontinuous solution to the transfer
equation. We speci�ed pulse of complex form (5.1) in the domain [−1, 1]. At points of discontinuity the initial
condition for the derivative was speci�ed by zero. Table 5 presents the results of testing for calculation times
t = 20 (10 periods) and t = 2000 (1000 periods).

The test used the integral norm L1. In the case of discontinuous solution, all schemesmust show the �rst
order of convergence in this norm [13, 15]. The Courant number was 0.4 in these calculations. All schemes,
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α N L1 order L1 L∞ order L∞
0.50 100 7.29e-04 — 1.04e-03 —

200 9.28e-05 2.97 1.27e-04 3.03
400 1.17e-05 2.98 1.51e-05 3.07
800 1.48e-06 2.99 1.82e-06 3.06

1600 1.87e-07 2.99 2.19e-07 3.05
1.00 100 5.72e-04 — 8.47e-04 —

200 7.24e-05 2.98 9.81e-05 3.11
400 9.17e-06 2.98 1.16e-05 3.08
800 1.16e-06 2.99 1.39e-06 3.06

1600 1.46e-07 2.99 1.68e-07 3.05
1.01 100 5.70e-04 — 8.28e-04 —

200 7.25e-05 2.97 9.90e-05 3.06
400 9.18e-06 2.98 1.16e-05 3.09
800 1.16e-06 2.99 1.39e-06 3.06

1600 1.46e-07 2.99 1.69e-07 3.04
1.05 100 5.71e-04 — 8.23e-04 —

200 7.26e-05 2.97 9.66e-05 3.09
400 9.20e-06 2.98 1.17e-05 3.04
800 1.16e-06 2.99 1.41e-06 3.06

1600 1.46e-07 2.99 1.70e-07 3.05
1.20 100 5.96e-04 — 8.71e-04 —

200 7.58e-05 2.97 1.03e-04 3.08
400 9.60e-06 2.98 1.23e-05 3.07
800 1.21e-06 2.99 1.47e-06 3.06

1600 1.52e-07 2.99 1.78e-07 3.05
1.50 100 7.39e-04 — 1.09e-03 —

200 9.37e-05 2.98 1.31e-04 3.05
400 1.19e-05 2.98 1.56e-05 3.08
800 1.50e-06 2.99 1.86e-06 3.06

1600 1.88e-07 2.99 2.24e-07 3.05

Table 3. Grid convergence on a nonuniform grid for BIS2 in
the case of sharp change of the grid step size.

i.e., CIP, BIS1, and BIS2 presented in the table have orders of convergence close to onewhen the grid is re�ned.
The BIS1 scheme has somewhat worse convergence than in other schemes. The CIP and BIS2 schemes have
approximately the same norms of errors and orders of convergence.

A similar test was carried out for a pulse of rectangular form, i.e.,

u(0, x) =
{
{
{

1, −0.9 ⩽ x ⩽ −0.8
0, otherwise

the other parameters were not changed. The results are presented in Table 6.
The tests show a lower order than in the case of a pulse of complex form (5.1), but it is comparable for all

schemes considered in the tests.

5.5 Numerical study of the conservative property of the obtained schemes

The BIS1 and BIS2 schemes are not conservative. In this paper we study the conservative property of schemes
numerically on the example of transfer of the rectangular pulse

u(0, x) =
{
{
{

1, −0.1 ⩽ x ⩽ 0.1
0, otherwise.

The other parameters are similar to those from the previous test on a uniform grid. Figure 4 presents the
portion of the area below the pulse in percents relative to its initial value depending on the distance of transfer
and normed by the size of the initial pro�le.
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β N L1 order L1 L∞ order L∞
0.00 100 5.72e-04 — 8.47e-04 —

200 7.24e-05 2.98 9.81e-05 3.11
400 9.17e-06 2.98 1.16e-05 3.08
800 1.16e-06 2.99 1.39e-06 3.06

1600 1.46e-07 2.99 1.68e-07 3.05
0.05 100 5.74e-04 — 8.46e-04 —

200 7.28e-05 2.98 9.85e-05 3.10
400 9.23e-06 2.98 1.18e-05 3.07
800 1.16e-06 2.99 1.41e-06 3.06

1600 1.46e-07 2.99 1.70e-07 3.05
0.20 100 6.22e-04 — 9.40e-04 —

200 7.88e-05 2.98 1.07e-04 3.13
400 9.97e-06 2.98 1.28e-05 3.06
800 1.26e-06 2.99 1.53e-06 3.07

1600 1.58e-07 2.99 1.86e-07 3.04
0.35 100 7.27e-04 — 1.10e-03 —

200 9.21e-05 2.98 1.28e-04 3.11
400 1.17e-05 2.98 1.55e-05 3.04
800 1.47e-06 2.99 1.84e-06 3.08

1600 1.85e-07 2.99 2.21e-07 3.06
0.50 100 8.93e-04 — 1.36e-03 —

200 1.13e-04 2.98 1.61e-04 3.08
400 1.43e-05 2.98 1.92e-05 3.07
800 1.81e-06 2.99 2.28e-06 3.08

1600 2.28e-07 2.99 2.77e-07 3.04

Table 4. Grid convergence on a nonuniform grid for BIS2 in
the case of smooth variation of the grid step.

The CIP scheme is conservative [18], the BIS1 and BIS2 schemes are not. However, the area of the initial
pro�le changes insigni�cantly (by less than 2%).

Figure 5 presents the graph of solution after 250000 steps of the di�erence scheme (transfer by the dis-
tance equal to 5000 sizes of the initial pro�le).

5.6 Numerical study of the scheme monotonicity

In addition we carried out the numerical study of the monotonicity of schemes considered here. The initial
condition was speci�ed in the form of parabola

u(0, x) = 4(x − h/2)2/h − h

ν(0, x) = 8(x − h/2)/h
(5.4)

where h is the grid step. The grid was chosen so that the point 0 was at a grid node. For such initial condition
all values speci�ed on the grid are non-negative. After that we considered the translation of the solution by
the distance of the half-step h/2 of the grid near the vertex of the parabola. The result is presented in Fig. 6.

The second and higher order schemes reconstruct the vertex of the parabola after its translation by half-
step. This vertex was previously at the middle of a cell, but now it is translated to a grid node. In this case
the solution at the vertex of the parabola is negative. Such behaviour of the solution completely corresponds
to Godunov’s theorem and indicates the non-monotonicity of the scheme. The monotone schemes do not
produce negative values, but the order of approximation decreases.

The graph of solution presented in Fig. 6 shows that only the CIR and BIS schemes give a monotone
solution. BIS1 decreases the approximation order only at the vertex of the parabola, in other nodes of the
scheme the solution is translated exactly in contrast with the CIR scheme. The CIP andBIS2 schemes translate
the parabola exactly and are not monotone.
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Figure 4. The portion of the area under the pulse graph relative to the initial one in percents depending on the distance of
transfer normed by the size of the initial pro�le. Results for the BIS1, BIS2, and CIP schemes.

a) b) c)

Figure 5. Numerical (dots) and exact (solid line) solutions to the linear transfer equation (1.1) after 250000 steps of the di�er-
ence scheme. a) CIP; b) BIS1; c) BIS2.

a) b)

c) d)

Figure 6. Numerical (dots) and exact (line) solutions to linear equation (1.1) after translation of the solution by half-cell step.
The horizontal line indicates the zero level. a) CIR; b) CIP; c) BIS1; d) BIS2.

Authenticated | k_h@inbox.ru author's copy
Download Date | 12/26/16 7:56 AM



N. I. Khokhlov and I. B. Petrov, High-order compact grid-characteristic schemes | 367

Scheme N t = 20 t = 2000
L1 order L1 L1 order L1

CIP 100 1.93e-01 — 5.75e-01 —
200 9.48e-02 1.02 3.64e-01 0.66
400 4.60e-02 1.04 2.08e-01 0.81
800 2.27e-02 1.02 1.09e-01 0.93

1600 1.22e-02 0.90 5.31e-02 1.04
BIS1 100 2.90e-01 — 5.78e-01 —

200 1.21e-01 1.26 5.25e-01 0.14
400 5.63e-02 1.11 3.08e-01 0.77
800 2.56e-02 1.14 1.35e-01 1.20

1600 1.27e-02 1.01 6.24e-02 1.11
BIS2 100 1.98e-01 — 6.06e-01 —

200 9.35e-02 1.08 4.22e-01 0.52
400 4.46e-02 1.07 2.14e-01 0.98
800 2.20e-02 1.02 1.07e-01 1.00

1600 1.18e-02 0.90 5.10e-02 1.07

Table 5. Grid convergence for a pulse of complex form.

Scheme N t = 20 t = 2000
L1 order L1 L1 order L1

CIP 100 7.23e-02 — 1.66e-01 —
200 3.88e-02 0.90 1.31e-01 0.34
400 2.68e-02 0.53 8.38e-02 0.65
800 1.61e-02 0.74 4.28e-02 0.97

1600 9.56e-03 0.75 3.03e-02 0.50
BIS1 100 9.86e-02 — 1.27e-01 —

200 5.66e-02 0.80 1.23e-01 0.04
400 2.65e-02 1.10 1.04e-01 0.25
800 1.57e-02 0.75 6.23e-02 0.74

1600 9.36e-03 0.75 2.98e-02 1.06
BIS2 100 7.69e-02 — 1.69e-01 —

200 4.16e-02 0.89 1.33e-01 0.35
400 2.64e-02 0.66 8.52e-02 0.64
800 1.57e-02 0.75 4.62e-02 0.88

1600 9.36e-03 0.75 2.97e-02 0.64

Table 6. Grid convergence in the case of rectangular
pulse.

6 Conclusion
In this paper we consider several compact di�erence schemes for the one-dimensional transfer equation on
a two-point stencil. The di�erence schemes are constructed with the use of interpolation polynomials of the
�rst–third orders of accuracy. Starting from di�erent di�erence schemes constructed on the same stencil, we
construct hybrid di�erence schemes possessing the property ofmonotonicity.Wehave constructed the hybrid
monotone di�erence scheme BIS1 based on the grid-characteristic monotonicity criterion and the hybrid dif-
ference scheme BIS2 based on the hybridization criterion proposed in this paper. The hybridization criterion
is based on the determination of local extrema in the interval including the grid stencil, the obtained scheme
is not monotone, but it possesses a monotone behaviour and less numerical di�usion. The theoretical order
of approximation of the constructed schemes is 1–3 depending on the behaviour of the solution. Numerical
study of the convergence of these di�erence schemes indicated an increased order of accuracy. Thus, the BIS2
gives the order 3 in the norms L1 and L∞, the BIS2 gives the order 2.2 in the norm L1 and 1.5 in the norm L∞.
The BIS1 satis�esmonotonicity criterion (4.1), which is su�cient for the stability [7]. We did not study the sta-
bility of BIS2 separately, but it proved to be stable in numerical experiments for di�erent Courant numbers
less than or equal to one and di�erent forms of pulses.

The original texts of all test examples are available in Internet at https://github.com/khokhlov/compact3.
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