
1

Carnegie Mellon

Машинный уровень 2: Управление
Основы	
 информатики	

Компьютерные	
 основы	
 программирования

goo.gl/X7evF

На основе CMU	
 15-­‐213/18-­‐243:	

Introduction	
 to	
 Computer	
 Systems

goo.gl/Q7vgWw
Лекция	
 5,	
 05 марта,	
 2017

Лектор:	

Дмитрий	
 Северов,	
 кафедра	
 информатики	
 608	
 КПМ
dseverov@mail.mipt.ru

w27001.vdi.mipt.ru/wp/?page_id=346

2

Машинный	
 уровень	
 2:	
 Управление
¢ Управление:	
 флаги	
 условий
¢ Условные переходы	
 и	
 пересылки
¢ Циклы
¢ Операторы	
 переключения
¢ Процедуры	
 IA	
 32

§ Структура	
 стека
§ Соглашения	
 вызова	
 процедур
§ Рекурсия	
 и	
 указатели

3

Carnegie Mellon

Состояние	
 процессора (x86-­‐64,	
 частично)

¢ Информация	
 о	

непосредственно	

исполняемой	
 программе
§ Промежуточные	
 данные
(
 %rax,	
 …	
)

§ Адрес	
 вершины	
 стека
(
 %rsp)

§ Адрес	
 текущей	
 команды
(
 %rip,	
 …	
)

§ Результаты	
 последних	

проверок (
 CF,	
 ZF,	
 SF,	
 OF)

%rip

Регистры

Текущая	
 вершина	
 стека
Указатель	
 команды

CF ZF SF OF Флаги	
 условий

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

4

Флаги	
 условий (неявная	
 установка)
¢ Однобитные	
 регистры-­‐ флаги

§CF перенос (для unsigned) SF знак (для signed)
§ZF ноль OF переполнение (для signed)

¢ Устанавливаются	
 арифметическими	
 операциями
неявно	
 (как	
 побочный	
 результат)
Пример:	
 addq Src,Dest↔	
 t = a+b
CF=1,	
 если	
 перенос	
 в	
 старший	
 бит	
 или	
 заём	
 из	
 него	
 (беззнаковое
переполнение)
ZF=1,	
 если t == 0
SF=1,	
 если t < 0 (как	
 знаковое), SF	
 ==	
 MSB
OF=1,	
 если переполнился	
 дополнительный	
 код	
 (знаковый)
(a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

¢ Не	
 устанавливаются	
 командой	
 lea!

5

Флаги	
 условий
(явная	
 установка	
 сравнением)
¢ Явная	
 установка	
 командами	
 сравнения

§cmpq Src2,	
 Src1
§cmpq b,a как	
 вычисление a-b без	
 сохранения	
 результата

§CF=1, если	
 перенос	
 из	
 старшего	
 бита	
 или	
 заём	
 в	
 него	

(используется	
 при	
 беззнаковых сравнениях)

§ZF=1, если a == b
§SF=1, если (a-b) < 0 (как	
 знаковые	
)
§OF=1, переполнение	
 в	
 дополнительном	
 коде	
 (знаковое)
(a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)>0)

6

Флаги	
 условий
(явная	
 установка	
 проверкой	
 бит)
¢ Явная	
 установка	
 командой	
 test

§testq Src2,	
 Src1
§testq b,a как	
 вычисление a&b без	
 сохранения	
 результата

§Устанавливает	
 флаги	
 в	
 зависимости	
 от	
 Src1 &	
 Src2
§Удобно,	
 если	
 один	
 из	
 операндов	
 -­‐ маска

§ZF=1, если a&b == 0
§SF=1,	
 если	
 a&b < 0 (старший	
 бит	
 ==	
 1)

7

Чтение	
 флагов	
 условий	
 IA32	
 -­‐ 1

¢ Команды	
 set*
§ Устанавливают	
 один	
 байт в	
 1	
 или	
 0	
 в	
 зависимости	
 от	
 флагов
§ Не	
 изменяют	
 остальные	
 7	
 байт

Команда Условие Описание
sete ZF Равно /	
 Ноль
setne ~ZF Неравно /	
 Не	
 ноль
sets SF Отрицательно
setns ~SF Неотрицательно
setg ~(SF^OF)&~ZF Больше (знаковое)
setge ~(SF^OF) Больше	
 или	
 равно (знаковое)
setl (SF^OF) Меньше (знаковое)
setle (SF^OF)|ZF Меньше	
 или	
 равно	
 (знаковое)
seta ~CF&~ZF Выше (беззнаковое)
setb CF Ниже (unsigned)

8

%rsp

x86-­‐64	
 Целочисленные	
 регистры

§ Можно	
 обращаться	
 к	
 младшим	
 байтам

%al

%bl

%cl

%dl

%sil

%dil

%spl

%bpl

%r8b

%r9b

%r10b

%r11b

%r12b

%r13b

%r14b

%r15b

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

9

Чтение	
 флагов	
 условий	
 -­‐ 2
¢ Команды	
 set*

§ Устанавливают	
 один	
 байт в	
 1	
 или	
 0	
 в	
 зависимости	

от	
 флагов

¢ Один	
 из	
 8	
 байтовых	
 регистров
§ Не	
 изменяются	
 остальные	
 байты	
 регистра	

§ Зануление остатка	
 обычно	
 – movzbl

§ 32-­‐битные	
 команды	
 зануляют старшие	
 32	
 бита

int gt (long x, long y)
{
return x > y;

}

Регистр Применение
%rdi аргумент x

%rsi аргумент y

%rax результат
cmpq %rsi, %rdi # Сравнение x:y
setg %al # Установка младшего байта %rax в 1 если >
movzbl %al, %eax # Зануление остальных байт %rax
ret

10

Машинный	
 уровень	
 2:	
 Управление
¢ Управление:	
 флаги	
 условий
¢ Условные переходы	
 и	
 пересылки
¢ Циклы
¢ Операторы	
 переключения
¢ Процедуры	
 IA	
 32

§ Структура	
 стека
§ Соглашения	
 вызова	
 процедур
§ Рекурсия	
 и	
 указатели

11

Переходы

¢ Команды	
 j*
§ Передача	
 управления	
 по	
 адресу	
 в	
 зависимости	
 от	
 флагов

j* Условия Описание
jmp 1 Безусловный
je ZF Равно /	
 Ноль
jne ~ZF Неравно /	
 Не	
 ноль
js SF Отрицательно
jns ~SF Неотрицательно
jg ~(SF^OF)&~ZF Больше (знаковое)
jge ~(SF^OF) Больше	
 или	
 равно (знаковое)
jl (SF^OF) Меньше (знаковое)
jle (SF^OF)|ZF Меньше	
 или	
 равно	
 (знаковое)
ja ~CF&~ZF Выше (беззнаковое)
jb CF Ниже (беззнаковое)

12

Carnegie Mellon

Пример	
 условного	
 ветвления	
 (по	
 старинке)

long absdiff
(long x, long y)

{
long result;
if (x > y)
result = x-y;

else
result = y-x;

return result;
}

absdiff:
cmpq %rsi, %rdi # x:y
jle .L4
movq %rdi, %rax
subq %rsi, %rax
ret

.L4: # x <= y
movq %rsi, %rax
subq %rdi, %rax
ret

¢ Создание
> gcc –Og -S –fno-if-conversion control.c

Регистр Применение
%rdi аргумент x

%rsi аргумент y

%rax результат

13

Carnegie Mellon

Представление	
 «go	
 to» кодом

long absdiff
(long x, long y)

{
long result;
if (x > y)

result = x-y;
else

result = y-x;
return result;

}

¢ Си	
 допускает оператор	
 goto
¢ Переход	
 в	
 точку,	
 обозначенную	
 меткой

long absdiff_j
(long x, long y)

{
long result;
int ntest = x <= y;
if (ntest) goto Else;
result = x-y;
goto Done;

Else:
result = y-x;

Done:
return result;

}

14

Cи код
val = Test ? Then_Expr : Else_Expr;

nt = !Test;
if (nt) goto Else;
val = Then_Expr;
goto Done;

Else:
val = Else_Expr;

Done:
. . .

Трансляция	
 условного	
 выражения	
 в	
 общем	

(используя	
 ветвление)

§ Test	
 – целочисленное	
 выражение
§ =	
 0	
 интерпретируется как	
 ложь
§ ≠	
 0	
 интерпретируется как	
 истина

§ Создаёт	
 раздельные	
 фрагменты	
 кода	

для	
 Then_Expr и Else_Expr

§ Исполняется	
 только	
 один	
 из	
 двух

val = x>y ? x-y : y-x;

“goto” версия

15

Си	
 код
val = Test

? Then_Expr
: Else_Expr;

result = Then_Expr;
eval = Else_Expr;
nt = !Test;
if (nt) result = eval;
return result;

Использование	
 условной	
 пересылки
¢ Команды	
 условной	
 пересылки
§ Команды	
 поддерживают:

if	
 (Test)	
 Destß Src
§ Есть	
 в	
 x86	
 процессорах	
 после	
 1995г.
§ GCC	
 пытается	
 использовать	
 их

§ Но,	
 только	
 в	
 безопасных	
 случаях!

¢ А	
 зачем?
§ Переходы	
 разрушают	
 конвейерное	

исполнение	
 инструкций

§ Условная	
 пересылка	
 не	
 вызывает	

передачи	
 управления

“goto” версия

16

Carnegie Mellon

Пример	
 условной	
 пересылки

absdiff:
movq %rdi, %rax # x
subq %rsi, %rax # result = x-y
movq %rsi, %rdx
subq %rdi, %rdx # eval = y-x
cmpq %rsi, %rdi # x:y
cmovle %rdx, %rax # if <=, result = eval
ret

long absdiff
(long x, long y)

{
long result;
if (x > y)

result = x-y;
else

result = y-x;
return result;

}

Регистр Применение
%rdi аргумент x

%rsi аргумент y

%rax результат

17

Ресурсоёмкие	
 вычисления

Неудачные	
 применения	
 усл.	
 пересылки

¢ Оба	
 значения	
 вычисляются
¢ Имеет	
 смысл	
 только	
 для	
 очень	
 простых	
 выражений

val = Test(x) ? Hard1(x) : Hard2(x);

Рискованые	
 вычисления

¢ Оба	
 значения	
 вычисляются
¢ Возможен	
 нежелательный	
 эффект

val = p ? *p : 0;

Вычисления	
 с	
 побочным	
 эффектом

¢ Оба значения вычисляются

¢ Побочные эффекты должны исключаться

val = x > 0 ? x*=7 : x+=3;

18

Машинный	
 уровень	
 2:	
 Управление
¢ Управление:	
 флаги	
 условий
¢ Условные переходы	
 и	
 пересылки
¢ Циклы
¢ Операторы	
 переключения
¢ Процедуры	
 IA	
 32

§ Структура	
 стека
§ Соглашения	
 вызова	
 процедур
§ Рекурсия	
 и	
 указатели

19

Cи код
long pcount_do
(unsigned long x) {
long result = 0;
do {
result += x & 0x1;
x >>= 1;

} while (x);
return result;

}

long pcount_goto
(unsigned long x) {
long result = 0;
loop:
result += x & 0x1;
x >>= 1;
if(x) goto loop;
return result;

}

Пример	
 цикла “do-­‐while”

¢ Подсчитывает	
 количество	
 единичных	
 бит	
 в аргументе x	
 (подсчёт	

выталкиванием)

¢ Использует	
 условный	
 переход	
 для	
 зацикливания	
 или	
 выхода	
 из	
 цикла

“goto” версия

20

Компиляция	
 цикла	
 “do-­‐while”

movl $0, %eax # result = 0
.L2: # loop:

movq %rdi, %rdx
andl $1, %edx # t = x & 0x1
addq %rdx, %rax # result += t
shrq %rdi # x >>= 1
jne .L2 # if (x) goto loop
rep; ret

long pcount_goto
(unsigned long x) {
long result = 0;
loop:
result += x & 0x1;
x >>= 1;
if(x) goto loop;
return result;

}

“goto” версия

Регистры Применение
%rdi аргумент x

%rax результат

21

Си	
 код
do

Тело
while (Условие);

loop:
Тело
if (Условие)

goto loop

Компиляция	
 “do-­‐while” в	
 общем

¢ Тело: {
оператор1;
оператор2;

…
операторn;

}

“goto” версия

22

Carnegie Mellon

“while”	
 версия
while (Условие)

Тело

Трансляция “while”	
 в	
 общем	
 №1

¢ Трансляция	
 “переход-­‐в-­‐середину”
¢ Используется	
 при -Og

“goto”	
 версия
goto test;

loop:
Тело

test:
if (Условие)

goto loop;
done:

23

Пример	
 цикла	
 “while”№1

¢ Отличие	
 от	
 do-­‐while
§ Начальный	
 goto начинает	
 цикл	
 с	
 проверки

Cи код Переход в середину
long pcount_while
(unsigned long x) {
long result = 0;
while (x) {
result += x & 0x1;
x >>= 1;

}
return result;

}

long pcount_goto_jtm
(unsigned long x) {
long result = 0;
goto test;
loop:
result += x & 0x1;
x >>= 1;
test:
if(x) goto loop;
return result;

}

24

“while” версия
while (Условие)
Тело

“do-­‐while” версия
if (!Условие)

goto done;
do
Тело

while(Условие);
done:

Компиляция	
 “while” в	
 общем	
 №2

“goto” версия
if (!Условие)

goto done;
loop:

Тело
if (Условие)

goto loop;
done:

¢ сведение	
 к	
 “do-­‐while”	

¢ Используется	
 при –O1

25

Carnegie Mellon

long pcount_while
(unsigned long x) {
long result = 0;
while (x) {
result += x & 0x1;
x >>= 1;

}
return result;

}

long pcount_goto_dw
(unsigned long x) {
long result = 0;
if (!x) goto done;
loop:
result += x & 0x1;
x >>= 1;
if(x) goto loop;
done:
return result;

}

Пример	
 цикла	
 “while”№2

¢ Отличие	
 от	
 “do-­‐while”
§ Начальное	
 условие	
 защищает	
 вход	
 в	
 цикл

Cи код “do-­‐while” версия

26

Общая	
 форма	
 цикла	
 “for”

for(Начало; Условие; Изменение)

Тело

Общая форма Начало

Условие

Изменение

Тело

#define WSIZE 8*sizeof(int)
long pcount_for
(unsigned long x)

{
size_t i;
long result = 0;
for (i = 0; i < WSIZE; i++)
{
unsigned bit =
(x >> i) & 0x1;

result += bit;
}
return result;

}

i = 0

i < WSIZE

i++

{
unsigned bit =

(x >> i) & 0x1;
result += bit;

}

27

Цикл	
 “for”à цикл	
 “while”
“for” версия

Начало;

while (Условие) {

Тело

Изменение;

}

“while” версия

for(Начало; Условие; Изменение)

Тело

28

Carnegie Mellon

Преобразование	
 for-­‐while
long pcount_for_while
(unsigned long x)

{
size_t i;
long result = 0;
i = 0;
while (i < WSIZE)
{
unsigned bit =
(x >> i) & 0x1;

result += bit;
i++;

}
return result;

}

i = 0

i < WSIZE

i++

{
unsigned bit =

(x >> i) & 0x1;
result += bit;

}

Условие

Изменение

Тело

Начало

29

long pcount_for
(unsigned long x)

{
size_t i;
long result = 0;
for (i = 0; i < WSIZE; i++)
{
unsigned bit =
(x >> i) & 0x1;

result += bit;
}
return result;

}

long pcount_for_goto_dw
(unsigned long x) {
size_t i;
long result = 0;
i = 0;
if (!(i < WSIZE))
goto done;

loop:
{
unsigned bit =
(x >> i) & 0x1;

result += bit;
}
i++;
if (i < WSIZE)
goto loop;

done:
return result;

}

Cи код

Преобразование	
 цикла	
 “for”-­‐“do-­‐while”

¢ Начальное	
 условие	
 может	

быть	
 оптимизировано

“goto” версия

Начало

!Условие

Тело

Изменение

Условие

30

Машинный	
 уровень	
 2:	
 Управление
¢ Управление:	
 флаги	
 условий
¢ Условные переходы	
 и	
 пересылки
¢ Циклы
¢ Операторы	
 переключения
¢ Процедуры	
 IA	
 32

§ Структура	
 стека
§ Соглашения	
 вызова	
 процедур
§ Рекурсия	
 и	
 указатели

31

Пример	
 оператора	

switch

¢ Совмещённые	

варианты
§ case	
 5	
 и	
 case	
 6

¢ Переход	
 к	
 другому	

варианту
§ Из	
 case	
 2 в	
 case	
 3

¢ Отсутствующие	

варианты
§ case	
 4

long switch_eg
(long x, long y, long z)

{
long w = 1;
switch(x) {
case 1:

w = y*z;
break;

case 2:
w = y/z;
/* Переход к другому */

case 3:
w += z;
break;

case 5:
case 6:

w -= z;
break;

default:
w = 2;

}
return w;

}

32

Структура	
 таблицы	
 переходов

Блок	
 кода
0

Targ0:

Блок кода
1

Targ1:

Блок кода
2

Targ2:

Блок кода
n–1

Targn-1:

•
•
•

Targ0

Targ1

Targ2

Targn-1

•
•
•

jtab:

goto *JTab[x];

switch(x) {
case val_0:

Блок 0
case val_1:

Блок 1
• • •

case val_n-1:
Блок n–1

}

В	
 виде	
 switch

Приблизительный	
 перевод

Таблица	
 переходов Цели	
 переходов

33

Пример	
 оператора	
 перехода

Пролог:

long switch_eg(long x, long y, long z)
{

long w = 1;
switch(x) {
. . .

}
return w;

}

Какой	
 диапазон	
 значений	

определён	
 местом	
 default?

w инициализирован	

не	
 здесь	
 !

switch_eg:
movq %rdx, %rcx
cmpq $6, %rdi # x:6
ja .L8
jmp *.L4(,%rdi,8)

Регистры Использование
%rdi аргумент x

%rsi аргумент y

%rdx аргумент z

%rax результат

34

Пример	
 оператора	
 перехода
long switch_eg(long x, long y, long z)
{

long w = 1;
switch(x) {
. . .

}
return w;

}

Косвенный переход

Таблица	
 переходов

Пролог:

.section .rodata
.align 8

.L4:
.quad .L8 # x = 0
.quad .L3 # x = 1
.quad .L5 # x = 2
.quad .L9 # x = 3
.quad .L8 # x = 4
.quad .L7 # x = 5
.quad .L7 # x = 6

switch_eg:
movq %rdx, %rcx
cmpq $6, %rdi # x:6
ja .L8 # переход к default
jmp *.L4(,%rdi,8) # goto *JTab[x]

35

Пояснения	
 к	
 ассемблерному	
 прологу

¢ Структура	
 таблицы
§ Каждый	
 переход	
 требует 8 байт
§ Базовый	
 адрес	
 (начало)	
 .L4

¢ Переход
§ Прямой: jmp .L8
§ Цель	
 перехода	
 обозначена	
 меткой .L8

§ Косвенный: jmp *.L4(,%rdi,8)
§ Начало	
 таблицы	
 переходов:	
 .L4
§ Масштабный	
 множитель	
 8 (адреса	
 -­‐ 8 байт)
§ Адрес	
 перехода	
 – в	
 ячейке	
 по	
 эффективному	
 адресу	
 .L4 + x*8

§ Только	
 для	
 0	
 ≤	
 x ≤	
 6

Таблица	
 переходов
.section .rodata

.align 8
.L4:

.quad .L8 # x = 0

.quad .L3 # x = 1

.quad .L5 # x = 2

.quad .L9 # x = 3

.quad .L8 # x = 4

.quad .L7 # x = 5

.quad .L7 # x = 6

36

.section .rodata
.align 8

.L4:
.quad .L8 # x = 0
.quad .L3 # x = 1
.quad .L5 # x = 2
.quad .L9 # x = 3
.quad .L8 # x = 4
.quad .L7 # x = 5
.quad .L7 # x = 6

Таблица	
 переходов

switch(x) {
case 1: // .L3

w = y*z;
break;

case 2: // .L4
w = y/z;
/* Fall Through */

case 3: // .L5
w += z;
break;

case 5:
case 6: // .L6

w -= z;
break;

default: // .L2
w = 2;

}

37

Блоки	
 кода	
 (x	
 ==	
 1)
.L3:

movq %rsi, %rax # y
imulq %rdx, %rax # y*z
ret

switch(x) {
case 1: // .L3

w = y*z;
break;

. . .
}

Регистры Использование
%rdi аргумент x

%rsi аргумент y

%rdx аргумент z

%rax результат

38

Рализация	
 перехода	
 к	
 другому

long w = 1;
. . .

switch(x) {
. . .

case 2:
w = y/z;
/* Fall Through */

case 3:
w += z;
break;

. . .
} case 3:

w = 1;

case 2:
w = y/z;
goto merge;

merge:
w += z;

39

Carnegie Mellon

Блоки	
 кода	
 (x	
 ==	
 2,	
 x	
 ==	
 3)
.L5: # Case 2

movq %rsi, %rax
cqto
idivq %rcx # y/z
jmp .L6 # goto merge

.L9: # Case 3
movl $1, %eax # w = 1

.L6: # merge:
addq %rcx, %rax # w += z
ret

long w = 1;
. . .

switch(x) {
. . .

case 2:
w = y/z;
/* Fall Through */

case 3:
w += z;
break;

. . .
} Регистры Использование

%rdi аргумент x

%rsi аргумент y

%rdx аргумент z

%rax результат

40

Carnegie Mellon

Блоки	
 кода	
 (x	
 ==	
 5,	
 x	
 ==	
 6,	
 default)
.L7: # Case 5,6
movl $1, %eax # w = 1
subq %rdx, %rax # w -= z
ret

.L8: # Default:
movl $2, %eax # 2
ret

switch(x) {
. . .
case 5: // .L7
case 6: // .L7

w -= z;
break;

default: // .L8
w = 2;

}

Регистры Использование
%rdi аргумент x

%rsi аргумент y

%rdx аргумент z

%rax результат

41

Промежуточный	
 итог	

¢ Управление	
 в	
 Cи

§ if-­‐then-­‐else
§ do-­‐while
§ while,	
 for
§ switch

¢ Управление	
 в	
 ассемблере
§ Условный переход
§ Условная	
 пересылка
§ Косвенный	
 переход	
 (по	
 таблице	
 переходов)
§ Компилятор	
 создаёт	
 код	
 для	
 более	
 сложного	
 управления

¢ Стандартные	
 приёмы
§ Циклы	
 преобразуются	
 в	
 форму	
 do-­‐while или	
 переход-­‐в-­‐середину
§ Большие	
 switch	
 используют	
 таблицы	
 переходов
§ Разреженные	
 switch	
 могут	
 использовать	
 решающие	
 деревья

