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Abstract―For wave propagation in heterogeneous media, we compare numerical results produced by
grid-characteristic methods on structured rectangular and unstructured triangular meshes and by a
discontinuous Galerkin method on unstructured triangular meshes as applied to the linear system of
elasticity equations in the context of direct seismic exploration with an anticlinal trap model. It is
shown that the resulting synthetic seismograms are in reasonable quantitative agreement. The grid-
characteristic method on structured meshes requires more nodes for approximating curved boundar-
ies, but it has a higher computation speed, which makes it preferable for the given class of problems.
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INTRODUCTION
The numerical simulation of wave propagation in rock with the subsequent analysis of synthetic seis-

mograms is a task of utmost importance in planning exploration work and field data interpretation, as well
as is an integral part of the solution of inversion and migration problems. At present, numerous
approaches are available; their classification can be found, for example, [1–4]. An important criterion is
that the numerical method for solving the complete system of differential equations (usually the linear
elasticity equations [5]) is high-order accurate. This ensures low numerical viscosity, which is necessary
for wave propagation through distances of hundreds and thousands of wave lengths without wave front dis-
tortions. Accordingly, finite-difference methods (FDM), spectral element methods (SEM), and discon-
tinuous Galerkin methods (DGM) [6–9] are usually used in computational geophysics. Examples of
computations by applying the grid-characteristic method on structured and unstructured meshes can be
found in [10–14].

In this paper, the following three numerical methods are compared as applied to the two-dimensional
geological anticlinal trap model described in [1]:

• a discontinuous Galerkin method (DGM) on unstructured meshes [8, 15];
• a grid-characteristic method on unstructured triangular meshes (GCM Unstructured) [16, 17];
• a shock-capturing grid-characteristic method on structured meshes (GCM Structured) [18, 19].
The goal of comparison is to cross-verify the numerical methods and demonstrate the possibility of

solving two-dimensional direct simulation problems in seismic exploration for near industrial formula-
tions (in the frequency range of 10–80 Hz). We compare seismograms, individual wave paths, and the
required runtime and storage.

The anticlinal trap model from [1] is used as a geological model. The Marmousi [20], Marmousi2 [21],
and the SEG/EAGE salt model are also frequently chosen for comparison.

Such comparisons are rare in the literature and usually concern no more than two numerical methods.
The DGM and its modifications are usually verified and compared in terms of accuracy with SEM [7, 22–24].
The comparison of SEM and DGM in [6] shows that they have a comparable runtime per one degree of



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 56  No. 6  2016

SIMULATION OF ELASTIC WAVE PROPAGATION IN GEOLOGICAL MEDIA 1087

freedom, while their total number is somewhat larger in DGM. In [25] three numerical methods (FDM,
SEM, Kirchhoff’s) are compared in the context sea seismic exploration with a daytime surface of complex
geometry. Four methods (FDM, FEM, SEM, and DGM) as applied to the simulation of seismic wave
propagation in earthquakes for various P-wave to S-wave speed ratios (cp/cs) are compared in [26].

1. GOVERNING EQUATIONS AND NUMERICAL METHODS
The behavior of a rock medium was described using the model of an ideal isotropic linear elastic mate-

rial [5]. The following system of partial differential equations describes the state of an elastic material in a
volume element in the approximation of small deformations for the two-dimensional case:

where ρ is the density of the medium; λ and μ are the Lamé constants;  and  are the horizontal and
vertical velocities of the medium particles; and σxx, σyy, and σxy are stress tensor components.

This system can be rewritten in matrix form:

 (1)

where u is the vector of five independent variables: u = (σxx, σyy, σxy, , )T. Closed-form expressions for
the matrices Apq and Bpq can be found in [27]. Here and below, summation over repeated indices is implied.
The eigenvalues of Apq and Bpq are s1 = –cp, s2 = –cs, s3 = 0, s4 = cs, and s5 = cp, where cp and cs are the
respective velocities of propagation of P- and S-waves in the medium. Below, we briefly describe the
numerical methods to be compared.

1.1. Discontinuous Galerkin Method

Assume that the integration domain is partitioned into triangular cells T(m) and the matrices Apq and Bpq

are constant inside T(m). In each cell, the solution of system (1) is numerically approximated by a linear

combination of (N + 1)(N + 2) time-independent polynomial functions Φk(x, y) of degrees at most N

(which form a basis supported by T(m)) with time-dependent coefficients:

 (2)

Multiplying (1) by the basis function Φk and integrating the result over the triangle T(m), we obtain

 (3)

Next, applying the integration-by-parts formula yields

 (4)

The second term appears since the solution uh and the matrices Apq and Bpq are generally discontinuous on

the boundary of T(m). Here,  is the numerical f lux through the jth edge of T(m) in a global coordinate
system and (∂T(m))j denotes the sides of T(m), j = 1, 2, 3.

Let  be the transition matrix to a coordinate system X’Y’ associated with the jth edge of T(m) (the

transformation is orthogonal). Then the f lux  can be approximately found as

 (5)
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where  is the solution of the one-dimensional Riemann problem, which can be obtained analytically by
applying the Rankine–Hugoniot jump condition to each characteristic and taking into account that the
velocity and the force density are continuous at the contact in the case of the no-slip contact condition.
Slip and dry friction conditions can also be set at the contact.

Expressions (2), (4), and (5) represent a semidiscrete numerical scheme. A more detailed derivation
can be found in [28, 8, 29]. The time differencing is based on a high-order accurate Runge–Kutta method,
which is fully local and well suited for parallelization. As a system of basis polynomials, we use the orthog-
onal Dubiner polynomials of fifth order, while the fifth-order Dormand–Prince method with an adaptive
step is used as an integrator.

1.2. Grid-Characteristic Method on Unstructured Meshes

By applying coordinate splitting, the design of a difference scheme for system (l) can be reduced to the
construction of a difference scheme for a system of the form

 (6)

For hyperbolic system (6), the matrix A can be represented as A = RΛR–1, where Λ is a diagonal matrix
with elements being the eigenvalues of A, while R is a matrix consisting of the right eigenvectors of A. After
introducing the new variables w = R–1u (Riemann invariants), system (6) is reduced to a system of five
independent scalar transport equations. To obtain the solution of the transport equation at the point (xm, ym) at
the time tn, we draw a corresponding characteristic through this point and find the intersection point ( , )
of this characteristic with the previous time level (t = tn – 1). Since the solution remains unchanged along
the characteristic, it remains to approximate the solution at the point ( , ) at t = tn – 1.

There are several methods for interpolation in a triangle that are used in the theory of grid-character-
istic methods. The simplest one is to choose the required number of additional points on the boundary of
a triangle or inside it and to use them in interpolation based on an Nth-degree polynomial [30]. Note that
monotonization may be required for interpolation of order higher than the first (for more details on
monotonization methods, see [31]).

After finding the Riemann invariants at the next time step, the solution is recovered as

 (7)

In the theory of grid-characteristic methods, contacts are usually treated in a shock-fitting manner by
specifying boundary conditions in explicit form [11, 18]. In this paper, we use a shock-capturing grid-
characteristic method, which has a number of advantages over the shock-fitting technique; specifically, it
is simpler and faster as applied to media with a large number of interfaces.

Let us describe the algorithm for computing transport equations on triangular meshes by applying the
shock-capturing grid-characteristic method. In this case, neighboring cells may have different physical
parameters, so we have to introduce special combined matrices of transition to Riemann invariants that
take into account the characteristics of both contacting cells. Let the cell reached by characteristics with
positive eigenvalues and all corresponding parameters (including the matrices A and R) be denoted by R.
The cell reached by characteristics with negative eigenvalues is denoted by L (Fig. 1).
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According to [32], we use the combined matrix R–1 with rows determined by the cell at which the cor-
responding characteristic arrives:

 (8)

where  and  are the left eigenvectors of the matrices AL and AR, respectively, and c3 = ( )/c1.

Here,  and  are approximations of physical parameters at a given point rather than in a cell. In this
work, they are approximated as  = (c1L + c1R)/2 and  = (c2L + c2R)/2. The transition matrix from the
Riemann invariants to the original variables is found by inverting matrix (8).

Unfortunately, efficient stable grid-characteristic schemes of order higher than the second are available
only on structured meshes.

1.3. Shock-Capturing Grid-Characteristic Method on Structured Meshes
The implementation of the grid-characteristic method on structured meshes is similar in many

respects to that on unstructured meshes. By coordinate splitting, the solution of system (1) is reduced to
the sequential solution of one-dimensional systems of form (6). Then the transition to Riemann invariants
is performed as described above. As a result, the problem is reduced to one-dimensional transport equa-
tions. They were numerically integrated using the grid-characteristic schemes described in [31].

The code incorporates second- to fourth-order accurate schemes. Most of the computations were
based on a third-order accurate scheme.

As applied to the one-dimensional linear transport equation ut + aux = 0 with a > 0, this scheme is given by

 (9)
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Fig. 1. Schematic of the shock-capturing grid-characteristic scheme on an unstructured (triangular) mesh. The physical
parameters of neighboring triangles are generally different. The intersections of the characteristics with the preceding time
level are marked.

L R

n2

n1

cR
2n1−cL

1n1 −cL
2n1 cR

1n1

 

(4) (5)

(1)

(2)

(3)



1090

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 56  No. 6  2016

BIRYUKOV et al.

where σ = aτ/h, τ is the time step, and h is the spatial mesh size. Scheme (9) is stable for Courant numbers
not exceeding 1 and is third-order accurate in space and time. For monotonization, we use a grid-charac-
teristic monotonicity criterion [31] relying on the characteristic property of the exact solution:

In places where this criterion holds, the order of the scheme is reduced to the second.
After the transport equation has been numerically integrated, the transition to physical variables of the

original system is performed by multiplying the Riemann invariants by the inverse of matrix (8). The tran-
sition to Riemann invariants and the return to the original variables occur at every iteration step of the
time-stepping procedure.

2. NUMERICAL EXPERIMENT
2.1. Formulation

As a geological model, we use an anticlinal trap [1] with numerous contact surfaces, which represents
a typical hydrocarbon deposit (see Fig. 2). Due to the trap structure, the seismogram involves multiple
waves, which have to be separated from the useful signal, a task that can hardly be performed with low-
order numerical schemes. The sizes of the domain are indicated in kilometers. The parameters of the lay-
ers are given in Table 1.

A nonreflecting boundary condition was specified on the lower and lateral boundaries, while a free
boundary was set at the top of the domain. The perturbation source was defined as a vertical force applied
to an area from 925.7 to 974.1 m on the daytime surface with an amplitude described by a 40-Hz Ricker
wavelet.

Seismic data were recorded at a depth of 40 cm from the daytime surface (with 99 sensors distributed
uniformly from 20 to 1980 m). For a more detailed comparison, we used the 47th wave path (indexing
starts at 1) at the point x = 940 m.

2.2. Comparison of Results
The grids were constructed so as to simulate waves in the range 10–80 Hz. The minimum wavelength

(and, hence, the finest grid) was determined by the relation λmin = Vmin/fmax = 1.6 × 103/80 = 20 m. The
computational domain was discretized so that the wavelength was covered by least 5–10 points [33, 34].

1
1 1min( , ) max( , ).n n n n n

m m m m mu u u u u+
− −≤ ≤

Fig. 2. Anticlinal trap model.
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Relying on these requirements, uniform grids were constructed for all three methods. For example, for
DGM, in the case of fifth-order polynomials, it was sufficient to use ≈2 × 104 triangles (with five points
per wavelength) without taking into account the constraints on the geometry of the layers in the problem.
In view of the geometry, the number of triangles was increased to ≈4 × 104. For the second-order GCM
Unstructured, we used ≈1.5 × 106 triangles. For the GCM Structured, the grid was uniform in both direc-
tions and consisted of 2000 × 1722 or ≈3.4 × 106 cells.

Table 2 gives the runtime for each the methods. All the characteristics were normalized by the number
of degrees of freedom to make the comparison more objective, since the methods have different orders.
Let us explain the method for computing the runtime required for a single degree of freedom in the case
of DGM. One step of the fourth-order Runge–Kutta algorithm in the case of sixth-order polynomials and
98916 triangles requires time of 6.7 s on one core of an Intel (R) Xeon (R) CPU Е5-2620 v2 @ 2.1 GHz
processor. Then, by normalizing the single-step runtime by the number of integration stages, the number

of degrees of freedom per cell (N + l)(N + 2), the number of cells, and the number of kernels, we obtain

6 × 10–1 μs. For the third-order GCM Structured, the runtime was normalized by 32 = 9, which corre-
sponds to a grid for a first-order scheme with nine times more nodes.

The storage was not compared, since its normalized value is identical for all methods and is equal to
the number of unknowns (five) times the f loating-point number size. It should be emphasized that some-
what more degrees of freedom is necessary for DGM to achieve the same accuracy as in GCM, because
the solution on a cell boundary is discontinuous and the number of degrees of freedom over the perimeter
of the cell doubles, but the total effect of this is insignificant in comparison with the total amount of
storage.

It is difficult to compare numerical methods that are so different in nature. The runtime per one degree
of freedom (see Table 2) depends not only on the method used, but, to a higher degree, on its implemen-
tation. Judging from the number of operations required for one degree of freedom, GCM Structured is the
fastest method, GСМ Unstructured is the next, and DGM is theoretically the slowest of all. Additionally,
each method has its own distinctive features. For example, for DGM with Nth-order polynomials, the
order of convergence in space is N + 1. For GCM, the order of interpolation coincides with the order of
convergence in space and time. The time step constraint for methods on unstructured meshes is usually

1
2

Table 1. Parameters of the layers in the geological model

Layer
Parameters

cp (km/s) cs (km/s) ρ (g/cm3)

1 2.6 1.6 2.1
2 3.2 1.96 2.3
3 3.7 2.26 2.3
4 4 2.45 2.4
5 4.3 2.63 2.5
6 4.5 2.75 2.6
7 3.2 1.7 2.3
8 4.6 2.82 2.6
9 4.8 2.94 2.7
10 5.4 3.3 2.8

Table 2. Comparison of the methods in terms of runtime

Method Runtime per degree of freedom, μs

DGM 6 × 10–1

GCM Structured 1 × 10–2

GCM Unstructured 6
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written as Δt = , where hi is the minimum height of the ith cell. Therefore, such low-order meth-

ods require fewer integration steps, while the multiplier 1/N is missing in GCM Structured and many
other methods on structured meshes. Additionally, in some cases, the steps in space and time in GCM
Structured can be chosen so that the solution is “transferred” from the preceding time step without inter-
polation, i.e., the characteristics pass through the nodes.

Figure 3 shows the seismograms obtained with the help of three methods. Qualitatively, they are in
complete agreement in terms of amplitudes and phases. A more detailed inspection of their central
domains, which carry information on the location of the anticlinal trap (see Fig. 4), reveals small differ-
ences in the phases and amplitudes of the recorded signals: the maximum difference in time between the
recorded signals is 1.2 ms for DGM and GCM Structured and 3.8 ms for DGM and GCM Unstructured.
The maximum difference between the amplitudes of the vertical component is 4% for DGM and GCM
Structured and 11% for DGM and GCM Unstructured. This difference for GCM Unstructured is
explained by the fact that it has lower (second-order) accuracy than the other methods.

Figure 5 displays the wave pattern at t = 0.38 s. The velocity amplitude of medium particles is shown
in shades of gray. The response to the anticlinal trap is clearly seen in the central domain.

Figure 6 compares the vertical velocity component for the 47th wave path (sensor is at the point
(940 m, –0.4 m)). DGM and GCM Structured have identical signal shapes (phase relations), but the

1min i
i

i p

h
N c

Fig. 3. Vertical velocity seismograms produced by the discontinuous Galerkin method and the grid-characteristic method
on structured and unstructured meshes.
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Fig. 4. Detailed response to the anticlinal trap in the vertical velocity seismograms derived by the discontinuous Galerkin
method and the grid-characteristic method on structured and unstructured meshes.
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Fig. 5. Wave pattern at t = 0.38 s.
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amplitudes of the signals differ by 15%. The maximum difference between DGM and GCM Unstructured
amounts to 10%, which is explained by the difference in the accuracy of these methods.

CONCLUSIONS
Three high-order numerical methods were considered. Previously, it was shown in a number of studies

that, at a fixed level of errors, high-order methods are more efficient in terms of required resources than
low-order methods on finer grids [35]. The wave patterns computed for the anticlinal trap model by apply-
ing three methods showed that the amplitudes and phases of signals recorded on the daytime surface coin-
cide to a high degree. All three numerical methods and their software implementations are suitable for
field data computations. GCM Structured is much more efficient, since it requires fewer operations per
one degree of freedom and has a more efficient implementation on modern computers due to the density
of data.

It was shown that, despite its rectangular mesh discretization, GCM Structured yields results compa-
rable with those produced by the unstructured mesh methods. This is achieved by using a larger number
of nodes, which is compensated for by the higher computation speed. These results agree with the conclu-
sions drawn in [36, 37]. Nevertheless, unstructured-mesh methods might be preferable in the simulation
of complex-structured objects, when methods on structured meshes lead to large errors in the approxima-
tion of the geometry of the computational domain. A comparison of this kind is intended to be made in
future works.
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