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Abstract―The goal of this paper is the numerical solution of direct problems concerning hydrocarbon
seismic exploration on the Arctic shelf. The task is addressed by solving a complete system of linear
elasticity equations and a system of acoustic field equations. Both systems are solved by applying the
grid-characteristic method, which takes into account all wave processes in a detailed and physically
correct manner and produces a solution near the boundaries and interfaces of the integration domain,
including the interface between the acoustic and linear elastic media involved. The seismograms and
wave patterns obtained by numerically solving these systems are compared. The effect of ice structures
on the resulting wave patterns is examined.
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INTRODUCTION
According to the estimates presented in [1], the hydrocarbon resources in the Arctic region amount to

25% of the world’s reserves. Seismic exploration in this region has been conducted for more than 30 years
(see [2]). Seismic surveys on the Arctic shelf are complicated by the presence of water and ice layers [3]
and ice structures (icebergs, pressure ridges), which not only hamper the collection of data, but also affect
the resulting seismograms. Physical experiments aimed at evaluating these effects are expensive and fail to
provide a complete wave pattern for the objects under study. Additionally, all characteristics are measured
with errors and the collection of data in the Arctic region is complicated by heavy operating conditions
[4–6]. At the same time, numerical simulation makes it possible to investigate all spatial dynamical wave
processes and determine the contributions of waves of various types to recorded seismograms.

The numerical solution of seismic exploration problems is based primarily on ray methods [7]. In [8–13]
such problems were solved using finite element and spectral element methods, including high-order accu-
rate ones. Finite-difference schemes adapted to the simulation of seismic problems were presented in [11,
13, 14].

By applying the grid-characteristic method [15–22] with suitable conditions specified on the bound-
aries and interfaces of the integration domain [15], the above problems can be studied by performing series
of numerical experiments. In this paper, we compare wave patterns and seismograms obtained in the
numerical simulation of geological rocks by applying the linear elasticity system and the acoustic field sys-
tem. Additionally, the effect of icebergs on wave processes in seismic exploration is analyzed.

FORMULATION OF THE PROBLEM
Following [23], the state of a linear elastic continuum is governed by the equations

, (1)T( )tρ∂ = ∇ ⋅v σ
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. (2)

Equation (1) is a local equation of motion. Here,  is the material density,  is the velocity, and  is
the Cauchy stress tensor. In (2),  and  are the Lamé constants, which determine the properties of the
elastic material.

In (1), (2), and below, we use the following mathematical notation:

 is the partial derivative of a field  with respect to ;

 is the tensor product of vectors  and , ; and
 is the second-rank unit tensor.

Consider a system of equations describing an acoustic field, including liquids, in the approximation of
an ideal incompressible f luid [24]. Specifically, the pressure  and the velocity  are governed by the equa-
tions

, (3)

. (4)

In Eq. (4),  denotes the speed of sound in the acoustic medium.

GRID-CHARACTERISTIC METHOD

In the two-dimensional case, systems (1), (2) and (3), (4) can be represented in the form

, (5)

while, in the three-dimensional case, they can be rewritten as

. (6)

Next, splitting in two or three directions is performed and, for each direction, we obtain a system of the
form

(7)

with exact expressions

, (8)

(9)

in the two- and three-dimensional cases, respectively. In (7) and below,  denotes the matrices  and
 in the two- and three-dimensional case, respectively. In (8) and (9),  are matrices that can be

expressed in terms of elements of ,  are the eigenvalues of ,  are matrices that can be

expressed in terms of elements of ,  are the eigenvalues of ,  is the time step, and  is the

number of eigenvalues of the matrix . Suppose that  has a set  of positive eigenvalues, a set  of
negative eigenvalues, and a set  of zero eigenvalues.

The matrices  (both  and ) satisfy the relation

. (10)

T( ) ( ( ) )t∂ = λ ∇ ⋅ + μ ∇ ⊗ + ∇ ⊗v I v vσ

ρ v σ
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Accordingly, the matrices  corresponding to zero eigenvalues can be expressed as

. (11)

Taking into account (8) and (9), we obtain their equivalents

, (12)

(13)

The matrix  has a set of eigenvectors, so it can be represented in the form

. (14)

Here,  is the matrix composed of the eigenvectors of , while  is a diagonal matrix with elements
being the eigenvalues of .

The computations based on formulas (12) and (13) are divided into three stages. At the first stage, all
vectors  or  are multiplied by the matrix :

, (15)

. (16)
At the second stage, the following expressions are found in the two- and three-dimensional cases,

respectively:

, (17)

. (18)

At the third stage, back substitutions of coordinates yield

(19)

. (20)
The use of formulas (17) and (18) is equivalent to solving the independent advection equations

. (21)

Here and below,  denotes the eigenvalues  and  in the two- and three-dimensional cases,
respectively. Then Eqs. (21) are solved as described in [17] and, next, the same procedure is performed in
the y direction or the  and  directions in order to solve systems similar to (7).

BOUNDARY AND CONTACT CORRECTORS
Relying on the family of grid-characteristic methods, we can design numerical algorithms that perform

well near the boundaries and interfaces of the integration domain and preserve the order of accuracy of
the method used to compute the solution at interior nodes of the integration domain.

Suppose that the boundary condition is written in matrix form as

, (22)

(23)

in the two- and three-dimensional cases, respectively, where  and  are the
velocity and stress tensor components for system (1), (2) or the velocity and pressure for system (3), (4) at
a boundary point at the next integration step.

1
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For each direction, there are two types of correctors (for the left and right boundaries); i.e., overall
there are six and four types of boundary correctors in the three- and two-dimensional cases, respectively.
To be definite, we consider one of them. Suppose that the characteristics corresponding to the negative
eigenvalues of  go beyond the integration domain in the x direction.

Then, according to (15)–(20), at the stage of finding the solution at interior nodes, we calculate

, (24)

(25)

The matrix  consists of the eigenvectors corresponding to the negative eigenvalues.
At a boundary point, the corrector is given by the formulas

, (26)

(27)
in the two- and three-dimensional cases, respectively. Moreover, conditions (22) and (23) are satisfied
with the same order of convergence as that of the method used to solve system (1), (2) and, accordingly,
to find (24) and (25).

In (27), the matrices  and  are calculated using the formulas

, (28)
, (29)

and, in (28), the matrix  is found so that

. (30)
For system (1), (2), boundary conditions can be specified as a given boundary velocity, a given external

force density, mixed and nonreflecting conditions, and no-slip, free slip, or dynamic friction at contacts
[25]. For system (3), (4), boundary conditions can be specified in the form of a given normal boundary
velocity, a given pressure, or a contact condition. A contact condition is also set at the interface between
the linear elastic and acoustic media [16].

Suppose system (1), (2) is solved in the subdomain  of the integration domain, while system (3), (4)
is solved in the subdomain  of the integration domain, and let  be the outward normal vector to the
body a. Consider the contact condition between them in the three-dimensional case. Then system (1), (2)
has three outgoing characteristics, while system (3), (4) has one outgoing characteristic. Thus, to find all
four outgoing characteristics, we need the contact conditions

, (31)

, (32)

. (33)
Condition (31) means that the normal surface force density exerted by the solid is equal to the pressure

in the ideal f luid, condition (32) ensures that the tangential surface force density exerted by the solid is
zero, and (33) states that the normal velocities in the f luid and the solid are equal to each other.

LINEAR ELASTIC MEDIA

To be definite, let the vector  be directed along the x axis and the vectors  and  (or only  in the
two-dimensional case) form, together with , a Cartesian coordinate system. Define the symmetric sec-
ond-rank tensors

, (34)

where the indices vary from 0 to 2 and  means the vector .
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The action of the matrix  on the vector of unknowns defined as

(35)

in the three-dimensional case and as

(36)

in the two-dimensional case can be written as

. (37)

The matrices , , and  have an identical set of eigenvalues:

. (38)

The matrices  and  also have the same eigenvalues:

. (39)

In the two-dimensional case, the action of the matrix  from (15) on the unknown vector (36) can be
represented as

, (40)

, (41)

. (42)

In the three-dimensional case, the action of the matrix  from (16) on the unknown vector (35) can
be represented by (40), (41), and the expressions
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. (46)
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In (47), (48), and in what follows,  is defined as

. (49)

Consider a boundary corrector with a given external force density . In this case, conditions (22) and
(23) become

. (50)

Here and below,  denotes the outward normal vector to the boundary.
For a boundary corrector with a given boundary velocity , conditions (22), (23) become

. (51)

For a boundary corrector in mixed boundary conditions with a given normal boundary velocity  and
a given tangential external force density , conditions (22) and (23) become
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, (53)

where

. (54)

For the second boundary corrector in mixed boundary conditions with a given tangential boundary
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Consider a nonreflecting boundary corrector. Then the differences between the values along charac-
teristics (17) and (18) going beyond the integration domain must be zero, i.e.,
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where  is the matrix composed of the columns of  corresponding to the outgoing characteristics.
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normal vector to the boundary of a.
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ACOUSTIC MEDIA

To be definite, we consider the x direction. The action of the matrix  on the vector of unknowns
defined as

(67)

in the three-dimensional case and as

(68)

in the two-dimensional case can be written in the form

. (69)

The matrices , , and  have the same set of eigenvalues:

. (70)
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. (71)

In the two-dimensional case, the action of the matrix  from (15) on the vector of unknowns (68) can
be represented as

, (72)

. (73)

In the three-dimensional case, the action of the matrix  from (16) on the vector of unknowns (67)
can be represented by (72), (73), and the expression
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In the two-dimensional case, the action of the matrix  from (19) on the vector  can be repre-
sented in the form
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sented as
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. (77)
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. (80)

1A

[ ]T
1 2 3 p

p
⎡ ⎤= =⎢ ⎥
⎣ ⎦

v
q v v v

[ ]T
1 2 p

p
⎡ ⎤= =⎢ ⎥
⎣ ⎦

v
q v v

1
2 ( )

p

p
c

⎡ ⎤
⎡ ⎤ ⎢ ⎥ρ=⎢ ⎥ ⎢ ⎥⎣ ⎦ ρ ⋅⎢ ⎥⎣ ⎦

nv
A

n v
3D
1A 3D

2A 3D
3A

{ }, ,0,0c c−
2D
1A 2D

2A

{ }, ,0c c−

1Ω

1,2
1,2

p
p c

⎛ ⎡ ⎤⎞ω = = ⋅ ±⎜ ⎟⎢ ⎥ ρ⎝ ⎣ ⎦⎠

v
n vΩ

3 1ω = ⋅n v

1Ω

4 2ω = ⋅n v
1

1( )−
Ω ω

( )
( )

1 2 3 11

1 2

1
2p c

− ω + ω + ω⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥ρ ω − ω⎣ ⎦ ⎣ ⎦

v n n
Ω ω

1
1( )−

Ω ω

( )
( )

1 2 3 1 4 21

1 2

1
2p c

− ω + ω + ω + ω⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥ρ ω − ω⎣ ⎦ ⎣ ⎦

v n n n
Ω ω

1np p+ =

in
1 inn p p

c
+ −= +

ρ
v v p

1np p+ =

1n
pV+ ⋅ =v p



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 56  No. 6  2016

NUMERICAL SOLUTION OF SEISMIC EXPLORATION PROBLEMS 1135

The boundary corrector is given by the formulas

, (81)

. (82)
Consider a contact corrector with conditions

, (83)

. (84)
Let p be given by the formula

. (85)

Substituting p into (78) and (79), we obtain the action of this contact corrector for both bodies.

COMPARISON OF WAVE PROCESSES IN LINEAR ELASTIC AND ACOUSTIC MEDIA
We considered a multilayered geological medium with layers schematically shown in Fig. 1. The inte-

gration domain was 12000 m wide, with the tenth layer being at a depth of 2601 m. The nonreflecting
boundary conditions (58)–(61) were set on the lateral boundary of the integration domain. Condition
(77)–(79) with a given pressure equal to zero was specified on the daytime surface. The source was placed
at a depth of 6 m and was defined by a Ricker wavelet of frequency :

. (86)

Here,  denotes a quantity equal to unity divided by the distance between the minima of the Ricker wave-
let; it was equal to 40 Hz.

The receivers were also placed at a depth of 6 m and 4500 m away from the source on each side at inter-
vals of 24 m. The time step was set to 0.00037 s, and 5001 time steps were taken. The grid in the 10th layer
consisted of squares with a side length of 3 m, while a grid of 3 m by 2 m rectangles was used in the other
layers.

Two formulations were used in the numerical simulation. In the first one, the first layer was filled with
water. The parameters of all layers are given in Table. System (3), (4) was solved in the first layer, while
system (1), (2), in the other layers. Conditions (31)–(33) were set at the interface between the first and
second layers, while conditions (62) and (63) were specified on the other interfaces. In the second formu-
lation, system (3), (4) was solved in all layers, the velocity c was specified as that of longitudinal P-waves
in the corresponding layer, and conditions (83)–(85) were set at all interfaces. In both formulations, the
seventh layer was a hydrocarbon reservoir.

Figures 2–7 present the wave patterns at the times t = 0.4514, 0.6438, 0.6808, 0.8991, 1.332, and 1.85 s,
respectively. The magnitude of the velocity is shown in shades of gray. In Fig. 2–6, the left side of the inte-
gration domain for the second formulation is presented on the left, while the right side of the integration
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domain for the first formulation is shown on the right; in different figures, the regions have different sizes.
Figure 7 displays an upper part of the integration domain for the second formulation (upper half of the
figure) and for the first formulation (lower half). The receivers were also placed at a depth of 6 m and
4500 m away from the source on each side at intervals of 24 m. Figure 8 shows the seismograms [26] pro-
duced by the receivers to the left of the source for the second formulation (left half) and to the right of the
source for the first formulation (right half). For illustrative purposes, multiple waves were eliminated from
the water layer in the computations.

In Figs. 2 and 7, P-waves from the source are labeled by P; Stoneley waves in water, by St; and the
S-waves induced by the P-waves, by S. In Fig. 2, PP-waves reflected from the top of the reservoir are
labeled by PP1; PP-waves reflected from the bottom of the reservoir, by PP2; the exchange PS-wave
reflected from the top of the reservoir, by PS1; and the exchange PS-wave reflected from the bottom of
the reservoir, by PS2. In Fig. 3, SP1 marks the exchange SP-wave reflected from top of the reservoir;
SP2 marks the exchange SP-wave reflected from bottom of the reservoir; SS1 and SS2 mark SS-waves
reflected from the top and bottom of the reservoir, respectively; and rPP1 labels the responses to PP1-waves in
the water layer. The letters rPP2 in Fig. 4 denote the responses to PP2-waves in the water layer. In Fig. 5,
rPS1 and rPS2 label the responses to PS1- and PS2-waves in the water layer. In Fig. 6, rSS1 and rSS2
denote the responses to SS1- and SS2-waves in the water layer.

It can be seen that the numerical results obtained by solving the acoustic field system (3), (4) do not
contain Stoneley waves (St), S-waves (S), exchange PS-waves reflected from the reservoir top and bottom
(PS1, PS2), SS-waves reflected from the reservoir top and bottom (SS1, SS2), exchange SP-waves

Seismic characteristics of ten layers

Layer index Density, kg/m3 Speed of P-waves, m/s Speed of S-waves, m/s Layer thickness, m

1 1000 1500 – 60
2 2300 3200 1960 70
3 2300 3700 2260 150
4 2400 4000 2450 340
5 2500 4300 2630 360
6 2600 4500 2750 270
7 2300 3200 1700 60
8 2600 4600 2820 80
9 2700 4800 2940 70
10 2800 5400 3300 2601

Fig. 2. Wave patterns at t = 0.4514 s. Reflection of a P-wave from the reservoir.
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Fig. 3. Wave patterns at t = 0.6438 s. Reflection of an S-wave from the reservoir.

rPP1

SP1

SP2
SS2

SS1

Fig. 4. Wave patterns at t = 0.6808 s. Water response to the reservoir.

Fig. 5. Wave patterns at t = 0.8991 s. Water response to the reservoir.

rPS2 rPS1
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ref lected from the reservoir top and bottom (SP1, SP2) and, accordingly, the responses to them in the
water layer (rPS1, rPS2, rSS1, rSS2, rSP1, rSP2). These differences are also manifested in the seismo-
grams showing the vertical velocity (Fig. 8).

WAVE PROPAGATION IN THE PRESENCE OF ICEBERGS
The integration domain was a parallelepiped 120 m long, 120 m wide, and 60 m deep. The simulated

medium was defined as a multilayer system consisting of a water layer with two icebergs and a bottom rock
layer with a hydrocarbon sublayer.

The computations were performed on a rectangular grid with  nodes. The initial point pertur-
bation was specified by a Ricker wavelet of frequency 42.85 Hz. The nonreflecting boundary conditions
(58)–(61) were set on the lateral boundaries of the integration domain. There were 15000 time steps taken
in the run. A single time step was  s. The spatial step was equal to 0.4 m. The icebergs were 12 m ×
64 m × 12 m and 12 m × 12 m × 12 m in size with their bottom surfaces at a depth of 12 meters and with
their top surfaces being 1 m above the water. The ice density was set to 917 kg/m3, and the speeds of P- and
S-waves waves in the ice were specified as 394 and 2491 m/s, respectively. On the visible surfaces of the

75.4 10×

53 10−×

Fig. 6. Wave patterns at t = 1.332 s. Water response to the reservoir.

rSS2 rSS1

Fig. 7. Wave patterns at t = 1.85 s. Stoneley waves.
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Fig. 8. Seismograms.
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icebergs, we used condition (50) with the external force density set equal to zero. On the upper water sur-
face, we specified conditions (77)–(79) with the pressure set equal to zero. The water layer was 20 m thick
with a density of 1000 kg/m3 and speed of sound 1500 m/s. For a rock density of 2500 kg/m3, the speeds
of P- and S-waves were set to 6500 and 3700 m/s, respectively. The density of the hydrocarbon inclusion
was specified as 2000 kg/m3 with respective wave speeds of 4000 and 1250 m/s. The formulation of the
problem is shown in Fig. 9. Figure 10 presents the wave pattern at t = 0.195 s.

CONCLUSIONS
For the task of seismic exploration on the Arctic shelf, we compared wave processes and seismograms

numerically computed in the case of rock modeled as a linear elastic medium and an acoustic medium. It
was found that, in contrast to the linear elasticity system, the acoustic field system fails to reproduce

—Stoneley waves;
—S-waves in rock induced by P-waves propagating from a source located near the water surface;
—exchange PS-waves reflected from the top and bottom boundaries of the reservoir;

Fig. 9. Formulation of the problem.

Fig. 10. Water waves reflected from the icebergs.
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—SS-waves reflected from the top and bottom boundaries of the reservoir;
—exchange SP-waves reflected from the top and bottom boundaries of the reservoir;
—water responses to the above waves reflected from the reservoir.
These differences are also manifested in the seismograms showing the vertical velocity.
Additionally, the influence of ice structures (icebergs) on wave processes arising in seismic exploration

on the Arctic shelf was investigated. The numerical simulation was based on the grid-characteristic
method, which correctly describes wave processes in the problems under study and does not fail near the
boundaries and interfaces of the integration domain. The linear elasticity system and the acoustic field
system were jointly solved in this work.
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