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1 Введение

В мире существует огромное количество деталей, используемых в самых
разнообразных областях человеческой деятельности. Находясь под нагрузками и
воздействиями различного характера, детали неизбежно накапливают дефекты, в
том числе те, которые невозможно обнаружить тактильно-визуальными методами, не
разрушив деталь в диагностических целях. Думаю, не нужно убеждать читателя,
что эксплуатация деталей с такими дефектами может привести к катастрофическим
последствиям. Именно поэтому так важно работать над методами неразрушающего
контроля, которые позваляют без нарушения целостности детали находить и
распознавать внутренние повреждения детали. Математическому моделированию
одного из этих методов, я имею ввиду ультразвуковую дефектоскопию, на примере
стальных рельс посвящена часть моей дипломной работы.

Другая часть посвящена исследованию устойчивости одномерных аналогов
семейства сеточно-характеристических методов на неструктурированных
треугольных и тетраэдральных сетках с интерполяцией от третьего до пятого
порядков включительно, которые широко используются при численном решении
гиперболических систем уравнений.

Вообще для приближенного решения гиперболических уравнений в частных
производных существует широкий ряд различных методов [1, 2].

1.1 Сеточно-характеристический метод

Численное решение гиперболических систем уравнений может быть проведено с
применением сеточно-характеристического метода, который начинается с применением
расщепления по пространственным координатам. В результате мы получаем 3
одномерные гиперболические системы уравнений вида:

\partial \bfu 

\partial t
= \bfA j

\partial \bfu 

\partial xj

, (1.1)

где j = \{ 1, 2, 3\} . Каждая из этих систем обладает полным набором собственных
векторов с действительными собственными значениями, откуда каждую из систем
можно записать в следующем виде:

\partial \bfu 

\partial t
= \Omega  - 1

j \Lambda j\Omega j
\partial \bfu 

\partial xj

, (1.2)

где матрица \Omega j - матрица, составленная из собственных векторов, \Lambda j - диагональная
матрица, диагональными элементами которой являются собственные значения
матрицы \bfA j. Делая замену переменных \bfv = \Omega j\bfu , мы получим систему, распавшуюся
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на независимые скалярные уравнения переноса:

\partial \bfv 

\partial t
= \Lambda j

\partial \bfv 

\partial xj

. (1.3)

После решения отдельных уравнений переноса можно восстановить в исходном виде
решение \bfu n+1 = \Omega  - 1\bfv n+1.

Одномерные уравнения переноса можно решать c помощью обычных конечно-
разностных схем либо методом характеристик:

ut + \lambda ux = 0, \sigma =
\lambda \tau 

h
. (1.4)

В качестве примера можно вспомнить монотонный набор сеточно-характеристических
разностных схем, принцип построения которого основан на анализе пространства
сеточных функций и корректном выборе схемы для каждого из возможных случаев
для получения монотонного метода [3].

Можно более пристально изучить свойства характеристик гиперболического
уравнения, с помощью характеристики опустить искомое значение функции на
предыдущий временной слой, а затем воспользоваться той или иной интерполяцией
для приближенного получения искомого значения функции на следующем временном
слое.

1.2 Метод конечных элементов. Введение.

Помимо конечно-разностного подхода для получения численных методов для
гиперболических систем, существует ряд иных подходов. Среди них метод конечных
элементов, основу которого составляет представление решения в виде конечной
линейной комбинации ограниченных базисных функций Hi(x). Коэффициенты
(степени свободы) ui(t) при этих базисных функциях зависят от времени:

U(x, t) =
\sum 
i

Hi(x)ui(t). (1.5)

Базисные функции обычно берут непрерывными и отличными от тождественно нуля на
некотором носителе (конечном элементе). Соотношения, которые описывают эволюцию
степеней свободы, получаются из следствий исходного уравнения, в частности при
интегрировании произведения исходного уравнения и некоторых пробных функций,
которые, вообще говоря, могут и не совпадать с \{ Hi(x)\} .
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1.3 Метод конечных элементов. Разрывный метод Галеркина.

Одной из вариаций метода конечных элементов является разрывный метод
Галеркина [4–6]. Рассмотрим построение этого численного метода на примере системы
уравнений акустики в 2D случае (будем рассматривать однородную среду):

\bfu t +\bfA \bfu x +B\bfu y = 0 (1.6)

\bfu =

\left(   p

\upsilon 

\vargamma 

\right)   \bfA =

\left(   0 K 0

1/\rho 0 0

0 0 0

\right)   \bfB =

\left(   0 0 K

0 0 0

1/\rho 0 0

\right)   , (1.7)

где \rho - плотность среды, K - модуль упругости. Переходим к инвариантам Римана
\bfA \vec{}n = \bfA nx +\bfB ny = (\bfOmega \vec{}n) - 1\bfLambda \vec{}n\bfOmega \vec{}n:

\bfOmega =

\left(    - Z 0 Z

nx ny nx

ny nx ny

\right)   \bfLambda =

\left(    - c 0 0

0 0 0

0 0 c

\right)   (1.8)

- матрицы правых собственных векторов и собственных значений системы
соответственно, где Z =

\surd 
K\rho , c =

\sqrt{} 
K/\rho . Введем расчетную сетку, разобьем область

интегрирования Q на ячейки \{ R(k)
h \} , где h = \mathrm{m}\mathrm{a}\mathrm{x}

k
\mathrm{s}\mathrm{u}\mathrm{p}

\vec{}r1,\vec{}r2\in R(k)
h

| \vec{}r1  - \vec{}r2| . Численное решение

будем искать в пространстве функций, которые являются полиномами степени не выше
s в каждой ячейке:

\bfV s =
\bigotimes 
k

\bfV (k)
s ;\bfV (k)

s = \{ f \in L1 : f | 
R

(k)
h

\in P s(R
(k)
h ), f | 

Q\setminus R(k)
h

= 0\} , (1.9)

где P s(R
(k)
h ) - пространство полиномов степени не выше s, носитель которых -

ячейка R
(k)
h . Понятно, что функции, принадлежащие \bfV s, допускают разрывы 1-ого

рода на границах между ячейками. Хочется также отметить факт выбора нормы L1,
в которой будут вычисляться невязки и получаться соотношения на устойчивость,
сходимость и т.д. Выбрав пространство базисных функций, мы ищем численное
решение системы в следующем виде:

\bfu (\vec{}r, t) =
\sum 
k,i

H
(k)
i (\vec{}r)\bfq 

(k)
i (t), (1.10)

здесь \{ H(k)
i (\vec{}r)\} - полный набор базисных функций в пространстве \bfV s (индекс k

пробегает по всем ячейкам в области интегрирования Q, индекс i - по всем базисным
функциям пространства \bfV 

(k)
s для конкретного индекса k, т.е. для конкретной

ячейки R
(k)
h ), \bfq 

(k)
i (t) - степени свободы. Домножим решаемую нами систему на
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\int 
R

(k)
h

H
(j)
i d\vec{}r = \delta kj

\int 
R

(k)
h

H
(j)
i d\vec{}r:

\int 
R

(k)
h

H
(k)
i \bfu td\vec{}r +

\int 
R

(k)
h

H
(k)
i \bfA \bfu xd\vec{}r +

\int 
R

(k)
h

H
(k)
i \bfB \bfu yd\vec{}r = 0 (1.11)

\int 
R

(k)
h

H
(k)
i \bfu td\vec{}r +

\int 
\partial R

(k)
h

H
(k)
i \bfF d\vec{}r  - 

\int 
R

(k)
h

[(H
(k)
i )y\bfB \bfu + (H

(k)
i )x\bfA \bfu ]d\vec{}r = 0 (1.12)

В последнем равенстве введен поток \bfF при интегрировании по границе ячейки R
(k)
h . Как

уже говорилось выше, решение на границе между ячейками может быть разрывным, и
для того, чтобы рассчитать поток, в общем случае необходимо решать задачу эволюции
для системы при начальных условиях - полиномиальных функциях в каждой ячейке,
что есть очень сложная задача. Если для простых систем можно построить точное
решение, то для более сложных (нелинейных, например) - практически невозможно.

Хочется также отметить, что в гиперболических задачах возмущения
распространяются с конечной скоростью, а потому такая величина как поток в
какой-то определенной точке границы в какой-то определенный момент времени имеет
в тот же момент времени область зависимости в той же самой точке, а точнее на
«правом и левом берегу»разрыва. Здесь имеется ввиду свойство решения \bfu in(\vec{}r, t) и
\bfu out(\vec{}r, t) в точке (\vec{}r0, t0).

Возвращаясь обратно к вопросу вычисления потока, мы воспользуемся
приближенным решением задачи Римана о распаде произвольного разрыва.
Будем считать, что все пространство разбито прямой (плоскостью) - касательной
к границе \partial R

(k)
h в точке \vec{}r0 - на два полупространства, начальные условия - const

в каждом из них, а именно \bfu in(\vec{}r0, t0) и \bfu out(\vec{}r0, t0) соответсвенно. Такой способ
вычисления потока является приближенным и обеспечивает отличие от точного
значения потока на величину порядка O(h), хотя реальный порядок сходимости может
оказаться довольно высоким.

Так как гиперболическая система акустики инвариантна относительно поворотов
системы координат в пространстве, то повернем её так, чтобы Ox \upuparrows \vec{}n, где \vec{}n - вектор
нормали к касательной прямой (плоскости) в \vec{}r0:

\bfu = \bfT \vec{}n\bfu \vec{}n (1.13)

\bfT \vec{}n =

\left(   1 0 0

0 nx  - ny

0 ny nx

\right)   , (1.14)
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где nx и ny - направляющие косинусы нормали. Но тогда поток \bfF в точке \vec{}r0:

\bfF ((\vec{}r0)j, t0) =
1

2
\bfT \vec{}n((\vec{}r0)j)(A+ | A| )(\bfT \vec{}n((\vec{}r0)j))

 - 1
\sum 
i

\bfq k
i (t0)H

k
i ((\vec{}r0)j) +

+
1

2
\bfT \vec{}n((\vec{}r0)j)(A - | A| )(\bfT \vec{}n((\vec{}r0)j))

 - 1
\sum 
i

\bfq 
kj
i (t0)H

kj
i ((\vec{}r0)j), (1.15)

где (\vec{}r0)j пробегает по все точкам границы (мы её назовем (\partial R
(k)
h )j) между Rk

h

и соседом R
(k)j
h , j пробегает по всем соседям k-ой ячейки под номерами (k)j

соответственно. Теперь подставим выражение для потока в уравнение 1.12:

\sum 
l

[
\int 

R
(k)
h

H
(k)
i H

(k)
l d\vec{}r](\bfq k

l )t +

+1
2

\sum 
lj

\int 
(\partial R

(k)
h )j

H
(k)
l [\bfT \vec{}n(A+ | A| )(\bfT \vec{}n)

 - 1\bfq k
l H

k
l +\bfT \vec{}n(A - | A| )(\bfT \vec{}n)

 - 1\bfq 
kj
l H

kj
l ]d\vec{}r  - 

 - 
\sum 
l

[
\int 

R
(k)
h

(\bfB (H
(k)
i )yH

(k)
l +\bfA (H

(k)
i )xH

(k)
l )d\vec{}r]\bfq k

l = 0 (1.16)
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2 Определяющие уравнения

Для начала рассмотрим нестационарную трехмерную эйлерову систему уравнений
динамики твердого деформируемого изотропного тела (по сути уравнения, сводящиеся
к законам сохранения массы и импульса, с добавлением к ним закона Гука) [7]. При
выборе соответствующих переменных такая система уравнений в эйлеровой системе
координат принимает следующий вид:

\partial \rho 

\partial t
+ div(\rho \bfv ) = 0 (2.1)

\partial \rho \bfv 

\partial t
+ div(\rho \bfv \otimes \bfv  - \widehat \bfP ) = \bfzero (2.2)

\widehat \bfP \equiv tr\widehat \bfP 
3

\widehat \bfI + \widehat \bfS =  - p\widehat \bfI + \widehat \bfS ; tr\widehat \bfS = 0, (2.3)

где \widehat \bfP = [Pij];Pij = Pji - cимметричный тензор напряжения Коши, tr\widehat \bfP =
\sum 
i

P i
i ,

 - p\widehat \bfI - шаровая часть напряжений в сплошной среде, \widehat \bfS - девиаторная часть напряжений,
p =  - 1

3
tr\widehat \bfP - давление, \rho = \rho (\vec{}r, t) - плотность, \bfv = \bfv (\vec{}r, t) - скорость движения среды,\widehat \bfI - метрический тензор. Теперь воспользуемся законом Гука - экспериментальным

соотношением между напряжением в материале \widehat \bfP и его малыми деформациями
(линейно-упругий случай):

\widehat \bfP = \widehat \bfC \widehat \bfX , а точнееPij = CijpqXpq, (2.4)

где \widehat \bfC - тензор упругих постоянных, вид которого определятся реологией среды, а

\widehat \bfX = Xij =
1

2
(\nabla \bfd + (\nabla \bfd )T ) = [

1

2
(
\partial di
\partial xj

+
\partial dj
\partial xi

)], (2.5)

где \bfd - вектор смещения. Используя симметрию тензора \widehat \bfC и условия изотропии, можно
получить, что из 34 = 81 компонентов тензора \widehat \bfC только два будут независимы (Хотя
в отсутствии изотропии число независимых компонентов может достигать 21). В этом
случае тензор упругих постоянных принимает следующий вид:

Cijpq = \lambda \delta ij\delta pq + \mu (\delta ip\delta jq + \delta iq\delta jp), (2.6)

откуда выражение для тензора напряжения можно выразить следующим образом:

\widehat \bfP = [Pij] = \lambda tr(\widehat \bfX )\widehat \bfI + 2\mu \widehat \bfX = [\lambda tr(\widehat \bfX )\delta ij + 2\mu Xij], (2.7)

где \lambda и \mu - это, так называемые, коэффициенты Ламэ. Последний из них также
называется модулем сдвига. Заметим, что вместо \lambda и \mu могут использоваться и другие
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упругие коэффициенты, в частности, модуль Юнга и коэффициент Пуассона:

E =
(3\lambda + 2\mu )\mu 

\lambda + \mu 
;\sigma =

\lambda 

2(\lambda + \mu )
(2.8)

Рассмотрим систему из уравнений 2.2 и 2.7, из первого векторного уравнения имеем
три независимых скалярных уравнения, из второго векторного уравнения - шесть
независимых скалярных уравнения. Вектор искомых функций, который состоит из
девяти компонент, имеет вид:

\bfu = \{ v1, v2, v3, P11, P12, P13, P22, P23, P33\} . (2.9)

Таким образом система для линейно-упругой изотропной среды может быть записана
в привычном матричном виде [8]:

\partial \bfu 

\partial t
=

3\sum 
i=1

\bfA i
\partial \bfu 

\partial xi

, (2.10)

где матрицы размера 9\times 9 - \bfA i:

\bfA 1 =

\left(                   

0 0 0  - 1
\rho 

0 0 0 0 0

0 0 0 0  - 1
\rho 

0 0 0 0

0 0 0 0 0  - 1
\rho 

0 0 0

 - (\lambda + 2\mu ) 0 0 0 0 0 0 0 0

0  - \mu 0 0 0 0 0 0 0

0 0  - \mu 0 0 0 0 0 0

 - \lambda 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

 - \lambda 0 0 0 0 0 0 0 0

\right)                   

; (2.11)

\bfA 2 =

\left(                   

0 0 0 0  - 1
\rho 

0 0 0 0

0 0 0 0 0  - 1
\rho 

0 0 0

0 0 0 0 0 0  - 1
\rho 

0 0

0  - \lambda 0 0 0 0 0 0 0

 - \mu 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0  - (\lambda + 2\mu ) 0 0 0 0 0 0 0

0 0  - \mu 0 0 0 0 0 0

0  - \lambda 0 0 0 0 0 0 0

\right)                   

; (2.12)
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\bfA 3 =

\left(                   

0 0 0 0 0  - 1
\rho 

0 0 0

0 0 0 0 0 0  - 1
\rho 

0 0

0 0 0 0 0 0 0  - 1
\rho 

0

0 0  - \lambda 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

 - \mu 0 0 0 0 0 0 0 0

0 0  - \lambda 0 0 0 0 0 0

0  - \mu 0 0 0 0 0 0 0

0 0  - (\lambda + 2\mu ) 0 0 0 0 0 0

\right)                   

. (2.13)

Данная система уравнений является гиперболической, что означает наличие у каждой
из вышеприведенных матриц набора из 9 вещественных собственных чисел и базиса
из соответствующих собственных векторов. Такая форма записи системы уравнений
является привычной, каноничной записью, принятой в вычислительной математике
для построения разностных схем.

3 Исследование одномерных аналогов семейства

сеточно-характеристических методов на

неструктурированных сетках

При численном решении задач сейсмической разведки [9], сейсмики и при численном
исследовании анизотропных композитных материалов [10] широко используются
сеточно-характеристические методы [1, 9–11], в том числе на неструктурированных
треугольных [12] и тетраэдральных сетках [1, 13, 14] с интерполяцией от первого до
пятого порядков включительно[15]. Данные методы в одномерном случае сводятся к
группам одномерных разностных схем, проведено их исследование на устойчивость.
Для проведения дальнейших исследований был реализован программный пакет,
использующий численные методы, являющиеся одномерными аналогами семейства
численных методов на неструктурированных треугольных и тетраэдральных сетках.
Для начала сформулируем модельную задачу, которую численно собираемся решать:

u(x, t) : x\in [0, L], t\in [0, T ], ut  - \lambda ux = 0, \lambda > 0; (3.1)

т.е. мы ищем функцию времени и координаты на стандартной области
интегрирования, которая удовлетворяет уравнению переноса. Граничные условия
возьмем периодическими, а в качестве начального условия возьмем некоторое
синусоидальное возмущение на фоне вакуума, что весьма характерно для задач с
гиперболической системой уравнений - распространение некоторого возмущения-волны
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с конечной скоростью а пространстве:

u(x, 0) = \varphi (x), \varphi =

\Biggl\{ 
1 - cos(8\pi x

L
), x \in [0, L

4
]

0, x \in [L
4
, L]

. (3.2)

Рис. 1: Начальное условие

Поскольку в правой части уравнения переноса стоит 0, то значение функции вдоль
характеристики не меняется:

dx

dt
= \lambda \Rightarrow x(t, C) = \lambda t+ C \Rightarrow du(x(t, C), t)

dt
= 0 \Rightarrow u(x(t, C), t) = const(C) (3.3)

Введем в области [0, L] \times [0, T ] расчетную сетку равномерную по времени
и не обязательно равномерную по пространственной координате. Введенные
пространственные узлы (красные точки на рис. 2) и отрезки между ними (Ri)
мы назовем основными. Каждый основной отрезок в свою очередь мы разделим
(не обязательно равномерно) на N вспомогательных отрезков с помощью N  - 1

вспомогательного узла (желтые точки на рис. 2).
Как мы уже установили для уравнения переноса с нулевой правой частью, значение

функции u(x(t), t) не меняется вдоль характеристики x(t) : dx
dx

= \lambda , а потому значения
искомой функции в основных (красные точки) и вспомогательных (желтые точки)
узлах переносятся с n+1 временного слоя без изменения вдоль характеристик-прямых
на n временной слой. Таким образом для нахождения значений функции на следующем,
n + 1 временном слое мы должны, зная значения функции в узлах на предыдущем,
n временном слое, найти значение функции в точке пересечения (зеленые точки на
рис. 2) характеристики, идущей из искомого узла, с временной изолинией n слоя (Нас
интересуют пока только двухслойные явные схемы).
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Рис. 2: Два временных слоя одномерной расчетной сетки, характеристики

Для приближенного решения этой задачи мы воспользуемся интерполяцией. Пусть
\{ x0, x1, ..., xN+1\} - некий набор точек; u : [x0, xN+1]  - \rightarrow \Re : u(xi) = ui(i = \=0...N + 1) - для
функции u(x) известно N+1 значений в N+1 точках пространства соответственно. Эту
функцию мы приближенно заменим многочленом порядка N : u(x)\approx \widetilde PN(x) : \widetilde PN(xi) =

u(xi)(i = \=0...N + 1). Пусть \{ P0(x), P1(x), ..., PN(x)\} - базис в пространстве многочленов
порядка N , тогда \widetilde PN(x) = a0P0(x) + a1P1(x) + ...+ aNPN(x).

Рис. 3: Интерполяция на одномерной расчетной сетке

Для нахождения вектора \vec{}a = (a0, a1, ..., aN)
T мы составим систему линейных

алгебраических уравнений:\left\{           
u(x0) = a0P0(x0) + a1P1(x0) + ...+ aNPN(x0)

u(x1) = a0P0(x1) + a1P1(x1) + ...+ aNPN(x1)

...

u(xN) = a0P0(xN) + a1P1(xN) + ...+ aNPN(xN)

\Rightarrow \vec{}a, (3.4)

отсюда несложно узнать значение функции uinterp в нужной точке. Здесь также
хочется уточнить, что узлы для интерполяции мы будем брать с того основного
отрезка Ri, на который «упала»соответствующая характеристика, т.е. основные узлы,
формирующие основной отрезок Ri, и вспомогательные узлы, находящиеся внутри
основного отрезка Ri.
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Рис. 4: Два временных слоя одномерной расчетной сетки, характеристики

Аналогично условию устойчивости Куранта мы выберем шаг по времени следующим
образом:

T = k
\mathrm{m}\mathrm{i}\mathrm{n}
i\in T

(Ti)

\lambda 
, (3.5)

где k < 1, T = \{ Ti\} - множество всех отрезков между основными и/или
вспомогательными узлами. Отсюда сразу становится понятно, что характеристика
выходящая из вспомогательного узла внутри основного отрезка Ri на n+ 1 временном
слое падает на тот же самый отрезок Ri, но только уже на n-ом временном слое.
Характеристика, выходящая из основного узла, падает на левый по отношению к
нему основной отрезок. Расчеты были проведены для значений k = \{ 0.1; 0.3; 0.6; 0.9\} .
Расчеты останавливались, когда осцилляции достигали 0.1 от первоначального синуса
(см. рис. 5).

Рис. 5: Критерий остановки расчета

Мы рассмотрим 2 варианта: 1) В качестве базиса возьмем: \{ 1, x, x2, ..., xN\} ,
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а распределение вспомогательных узлов будет равномерным т. е. мы имеем
равномерное распределение пространственных точек на отрезке Ri, по которым мы
будем интерполировать. 2) Базис в пространстве многочленов степени N : \{ 1, x,
1
2
(3x2  - 1), 1

2
(5x3  - 3x), ...\} на отрезке [ - 1, 1] (многочлены Лежандра), из которого

затем благодаря линейному отображению L : [ - 1, 1]  - \rightarrow Ri получаем желаемый нами
базис. Точки, по которым мы будем интерполировать, так же получаются благодаря
линейному отображению L корней \{ x1, x2, ..., xN - 1\} \in [ - 1; 1] : dPN (x)

dx
= 0 на отрезок Ri.

Расчеты были проведены для N = \{ 3, 4, 5\} .

4 Результаты

(a) T=0 (b) T=13.59785

(a) T=27.1957 (b) T=40.79355
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(a) T=54.3914 (b) T=67.98925

(a) T=81.5871 (b) T=94.679887

Рис. 9: Результаты для многочленов Лежандра N=4 k=0.9

Простая интерполяция
3 4 5

0.1 11.232884 13.375 6
0.3 12.775 14.1375 6.45
0.6 16.65 15.5625 7.38
0.9 24.45 18.50625 7.785

Интерполяция «Лежандра»
3 4 5

0.1 17.21972 47.033715
0.3 21.267954 59.0779
0.6 29.85048 88.685024
0.9 48.009136 161.153948

Табл. 1: Время до остановки
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Простая интерполяция
3 4 5

0.1 1348 2140 1200
0.3 511 754 430
0.6 333 415 246
0.9 326 329 173

Интерполяция «Лежандра»
3 4 5

0.1 2492 10895
0.3 1026 4562
0.6 720 3424
0.9 772 4148

Табл. 2: Количество шагов до остановки

5 Ультразвуковая дефектоскопия

За последние полтора века железная дорога стала одним из основных способов
для транспортировки людей и грузов, а её основной элемент - стальные рельсы
- в процессе эксплуатации постоянно находятся под воздействием динамической
нагрузки и природно-климатических факторов, в результате чего в рельсах
накапливаются различные дефекты и деформации, таким образом надежность рельсов
снижается, а вероятность аварийных ситуаций повышается. Понятно, что среди
всего разнообразия повреждений рельса существуют дефекты, которые невозможно
обнаружить визуально-тактильными методами, и для этого случая были разработаны
методы неразрушающего контроля, такие как ультразвуковой метод, магнито-
динамический метод, метод вихревых токов и так далее [16–18].

В данной работе представлены результаты численного моделирования процесса
ультразвуковой дефектоскопии участка железнодорожного рельса с 4 различными
типами повреждений. На рис. 10 приведены фотографии четырех типов повреждений,
возникающих в рельсах. Данные взяты из книги [19], где приведен более подробный
перечень дефектов и повреждений рельсов. На рис. 10a изображена поперечная
трещина в головке. Код дефекта 20 1-2. На рис. 10b представлено вертикальное
расслоение металла. Код дефекта 30в 1-2. На рис. 10c изображено горизонтальное
расслоение металла. Код дефекта 30г 1-2. На рис. 10d представлено расслоение шейки
рельса. Код дефекта 50 1-2.
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(a) Поперечная трещина в головке (b) Вертикальное расслоение металла

(c) Горизонтальное расслоение металла (d) Расслоение шейки рельса

Рис. 10: Типы дефектов, возникающих в рельсах

6 Модель

На рис. 11 приведена схема численного эксперимента со всеми размерами модели.
Здесь указано расположение анализатора и области приложения анализирующего
импульса. Модель рельса представляет собой совокупность трех параллелепипедов с
регулярной прямоугольной расчетной сеткой в каждом из них.
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Рис. 11: Схема численного эксперимента

Шаг по пространству - 10 - 3, шаг по времени - 15\ast 10 - 8. Скорости звука и плотность:
c1 = 6250.1282, c2 = 3188.5210, \rho = 7800.0.

Теперь опишем параметры анализирующего импульса. Время действия
анализирующего импульса - 2 \ast 10 - 5. График анализирующего импульса - синус с
нулевой начальной фазой, длительность импульса соответствует 10 периодам синуса,
магнитуда импульса: (0, 0, - 1). Анализатор расположен в вертикальной плоскости
симметрии вдоль рельса прямо на поверхности головки рельса. То же самое можно
сказать о центре окружности - области приложения анализирующего импульса. В
расчете используется сеточно-характеристический метод [20] (схема Русанова 3 порядка
точности):

un+1
m = un

m +
\sigma 

2
(\Delta 0 +\Delta 1) +

\sigma 2

2
(\Delta 0  - \Delta 1) +

\sigma (\sigma 2  - 1)

6
(\Delta  - 1  - 2\Delta 0 +\Delta 1), (6.1)

где \sigma = \lambda \tau 
h

, \Delta 0 = un
m - 1  - un

m, \Delta  - 1 = un
m - 2  - un

m - 1, \Delta 1 = un
m  - un

m+1. Тут нужно как-то
обобщить. Рассмотрим постановку граничных условий. На краях расчетной области
ставятся условия свободной поверхности, что соответствует:

pk+1
(ijk) = 0, (6.2)

где p - давление, а набор индексов (ijk) пробегает все граничные узлы расчетной сетки.
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C торцов рельса мы ставим неотражающие граничные условия:

\partial R

\partial \vec{}n
= 0, (6.3)

где \vec{}n - это направление нормали к границе, а R - соответствующий линеаризованный
инвариант Римана, для которого не хватает граничного условия. Модель трещин -
бесконечно тонкая газонасыщенная трещина. Суть этой модели: граничные условия
свободной поверхности по обе стороны моделируемой трещины.

7 Результат расчета

На рис. 12 - 16 приведены результаты численного моделирования распространения
упругих волн в рельсе в различные моменты времени(a - d). На рис. 12 - 16 цветом
показан модуль скорости.

(a) (b)

(c) (d)

Рис. 12: Распространение упругих волн в рельсе с поперечной трещиной в головке
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(a) (b)

(c) (d)

Рис. 13: Распространение упругих волн в рельсе с вертикальным расслоением металла

(a) (b)

(c) (d)

Рис. 14: Распространение упругих волн в рельсе с горизонтальным расслоением
металла
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(a) (b)

(c) (d)

Рис. 15: Распространение упругих волн в рельсе с расслоением шейки рельса

(a) (b)

(c) (d)

Рис. 16: Распространение упругих волн в неповрежденном рельсе
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(a) Без трещин

(b) Поперечная трещина в головке (c) Вертикальное расслоение металла

(d) Горизонтальное расслоение металла (e) Расслоение шейки рельса

Рис. 17: Единица времени на графике: 3.75 \ast 10 - 6 сек.

8 Итог

Во-первых, стоит заметить кардинальную разницу во времени устойчивости для
обычной интерполяции и для интерполяции с многочленами Лежандра на Фекете
точках. Это дает надежду на получение интересных результатов при использовании
многочленов Якоби и Чебышева, а впоследствии и при обобщении на трехмерный
случай.

Во-вторых, моделирование ультразвуковой дефектоскопии проходило при выборе
частоты на нижней кромке ультразвука (0.5 MHz). В этом случае нам понадобилось
0.5 Gb оперативной памяти для хранения сетки (9 double для каждого узла). Для
случая, например, уже 10 MHz нам потребуется около 4.5 Tb. В этом состоит большая
проблема.
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